期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
黄土古气候变化趋势与青藏高原隆升关系初探 被引量:45
1
作者 刘秀铭 毛学刚 +8 位作者 丁仲礼 吕镔 郭雪莲 陈渠 陈家胜 贾佳 杨善林 hesse paul 陈发虎 《第四纪研究》 CAS CSCD 北大核心 2009年第5期988-999,共12页
粒度和磁化率是两个研究黄土古气候最常用的古环境变化指示参数,它们随着黄上占土壤地层变化而出现峰和谷的对应已经被证明是反映了天文轨道要素的周期变化。文章试图忽略这些受控于轨道要素的气候周期变化,而主要侧重考察黄土地层这两... 粒度和磁化率是两个研究黄土古气候最常用的古环境变化指示参数,它们随着黄上占土壤地层变化而出现峰和谷的对应已经被证明是反映了天文轨道要素的周期变化。文章试图忽略这些受控于轨道要素的气候周期变化,而主要侧重考察黄土地层这两个参数的平均值(或背景值)所反映的长期变化趋势。对兰州九州台黄土进行了系统采样和测量,发现兰州九州台黄土剖面粒度和磁化率曲线显示出两个明显的趋势,粒度从剖面底部向上有明显逐渐变粗趋势,指示着冬季风增强,与此同时,磁化率自下而上却逐渐增大,指示着夏季风增强的趋势。与黄土高原其他黄土剖面磁化率和粒度曲线对比发现,这是两个普遍存在的趋势。地理位置靠近青藏高原的剖面,这两个增大的趋势更明显。冬、夏季风同时逐渐增强是海陆热力差异增大所引起,反映了青藏高原第四纪时期的逐渐不断的隆升过程。因此,根据粒度和磁化率曲线变化趋势线的变化特点可以帮助分析和反推第四纪以来青藏高原隆升的过程。兰州九州台以及黄土高原各剖面粒度和磁化率曲线的线性变化趋势则可能指示着第四纪以来青藏高原是逐渐均匀缓慢的变化过程。我们对22Ma以来风积地层记录的变化趋势也做了分析。前人过去普遍认识的第四纪以来跳跃式或间歇式剧烈隆升在我们的数据中没有得到反映。黄土高原西部西宁、兰州、靖远等剖面磁化率显著的增长趋势可能与青藏高原隆升到一定高度后高原季风加强所致。 展开更多
关键词 兰州九州台 第四纪黄土 黄土高原冬-夏季风变化趋势 青藏高原隆升 趋势分析
下载PDF
中国与西伯利亚黄土磁化率古气候记录-氧化和还原条件下的两种成土模式分析 被引量:78
2
作者 刘秀铭 刘东生 +3 位作者 夏敦胜 hesse paul JIRI Chlachula 王冠 《中国科学(D辑)》 CSCD 北大核心 2007年第10期1382-1391,共10页
近20多年来随着中国黄土深入研究,揭示了中国黄土地层磁化率与成土古气候温湿程度基本成正比例关系,黄土地层磁化率也因此成为一个重要的古气候参考指标在第四纪古气候研究中,不仅在黄土堆积物而且也在湖相和海相沉积物中广泛应用.但是... 近20多年来随着中国黄土深入研究,揭示了中国黄土地层磁化率与成土古气候温湿程度基本成正比例关系,黄土地层磁化率也因此成为一个重要的古气候参考指标在第四纪古气候研究中,不仅在黄土堆积物而且也在湖相和海相沉积物中广泛应用.但是中国黄土地层磁化率与古土壤成壤强度(古气候温湿程度)呈正比的模式却不是到处都适用,黄土高原的周边地区就有不少例外的报道.而西伯利亚和阿拉斯加黄土则显示出另一极端的情形,一个完全相反的磁化率特点:在气候干冷期的黄土层获高值,而在气候温湿期的古土壤层获低值.过去的研究一直认为,其磁化率主要是反映古风力大小的变化,与成土作用基本无关.磁学测量研究发现,西伯利亚黄土和古土壤的差别,不仅有颗粒从大到小的变化,而且还有矿物组分变化:如磁赤铁矿从多到少,最后完全消失并取而代之出现了完全不同热磁行为的另一种矿物.这种矿物相变现象难以用单纯的风力强弱来解释.说明中国黄土和西伯利亚黄土可能存在两种不同的机制模式:中国黄土高原大部分处于蒸发量大于降雨量的干旱氧化环境,适当的水分或降雨有利于细小的磁铁矿和磁赤铁矿的形成,使得磁化率与古气候呈正比.而西伯利亚以及相应的高纬度地区,地理上属苔原或苔缘地区,湿润是该区域基本特点.间冰期更加温湿的气候使其湿润增加以致过剩,导致地表成土环境向还原方向移动.它使得喜氧化的强磁性矿物磁赤铁矿和磁铁矿渐趋不稳定,并逐渐转化形成适合其还原环境的弱磁性矿物如褐铁矿或其他铁的硫化物.间冰期气候越潮湿,还原程度也越高,强磁性矿物就被损耗得越多.正是这种高纬度的成土作用可能是导致其古土壤磁化率比黄土更低的主导因素之一. 展开更多
关键词 西伯利亚黄土 中国黄土 古气候磁化率磁性矿物 环境磁学
原文传递
Analysis on variety and characteristics of maghemite 被引量:4
3
作者 SHAW John BLOEMENDAL Jan +1 位作者 hesse paul ROLPH Tim 《Science China Earth Sciences》 SCIE EI CAS 2010年第8期1153-1162,共10页
Maghemite (γ-Fe2O3) is a very common mineral at the earth’s surface and also an important material for making music and video tapes. Maghemite is usually synthesized from magnetite under oxidizing conditions after a... Maghemite (γ-Fe2O3) is a very common mineral at the earth’s surface and also an important material for making music and video tapes. Maghemite is usually synthesized from magnetite under oxidizing conditions after a few hours or a few days below a temperature of 300°C. The magnetic property of thermal instability and the chemical action after heating is an important character for maghemite. That is, it will become hematite in certain proportion after being heated above 250°C. Maghemite is therefore actually unable to have its Curie temperature measured. But late using synthetic sample, maghemite was further found partially thermal stable with a measurable Curie temperature ~645°C. During our thermally magnetic experiments for a set of synthetic magnetite, we found that extra fined grain size (pseudo single domain (PSD) and small multi-domain (MD), mainly 1-10 μm) magnetite was formed to a completely thermally stable maghemite. This maghemite can also be produced by heating the same powder up to 700°C in an oven and keeping this temperature for 10 min, then cooling it down. When the generated maghemite by these two ways is heated from room temperature to 700°C, it shows almost fully reversible, or thermally stable. We used X-ray powder diffraction and Mssbauer spectroscopy to confirm the identity of this maghemite and compared its magnetic hysteresis, high temperature magnetization, low temperature thermal demagnetization, and low temperature susceptibility with those of the original preheated magnetite. Such quickly oxidized maghemite by heating to high temperature implies some types of maghemite formed in certain natural condition can carry a thermal remnant magnetization (TRM). Four types of maghemite were characterized and discussed according to their thermal stability. Among them, partially stable and fully thermally stable maghemite after heating should possess capability of carrying TRM. There is possibly a compensation of synthetizing maghemite between heating temperature and heating duration. The thermal stability of maghemite may be affected by a few factors, such as its purity (stoichiometry), heating temperature and duration. The grain size may be one of important factors. Maghemite might be similar to magnetite, having various magnetic properties corresponding to its grain size categories such as superparamagnetic (SP), single domain (SD) and MD. Low temperature measurement for PSD fine grain of synthetic magnetite shows a phenomenon of Verwey transition 'suppressed', its fundamental causes could be that the core diameter of oxidized magnetite is actually reach or approach SD size, so that its Verwey transition is shown 'suppressed'. 展开更多
关键词 maghemite PALEOMAGNETISM ENVIRONMENTAL MAGNETISM MAGNETIC MINERAL thermal stability TRM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部