This work aims to investigate the efficiency of Fariman sepiolite from Iran as an adsorbent to remove Cd from aqueous solutions. The effects of different experimental factors such as the initial Cd concentration, cont...This work aims to investigate the efficiency of Fariman sepiolite from Iran as an adsorbent to remove Cd from aqueous solutions. The effects of different experimental factors such as the initial Cd concentration, contact time and the sorbent dose were investigated through a series of batch adsorption experiments. The results show that the adsorption capacity of sepiolite for Cd increases with the contact time, the initial concentration of Cd solutions and the sorbent dose. Sorption of Cd by Fariman sepiolite is rapid within the first hour of the experiment and then slowly increases until a pseudo equilibrium is approached at 8 h. The results also show that the time-dependent Cd sorption data are better described with pseudo second-order (7〉0.999) than that of pseudo first-order (r2〉0.971) kinetic model. Equilibrium isotherm studies show that the experimental data are better correlated by the Freundlich adsorption isotherm (7〉0.995) than the Langmuir (P〉0.825). It is suggested that both adsorption and cation exchange reactions are responsible for the sorption of Cd by the sepiolite, and the mineral has a very good potential to remove Cd from aqueous solutions.展开更多
基金Shahid Chamran University of Ahvaz and Isfahan University of Technology for the financial supports they provided for this study
文摘This work aims to investigate the efficiency of Fariman sepiolite from Iran as an adsorbent to remove Cd from aqueous solutions. The effects of different experimental factors such as the initial Cd concentration, contact time and the sorbent dose were investigated through a series of batch adsorption experiments. The results show that the adsorption capacity of sepiolite for Cd increases with the contact time, the initial concentration of Cd solutions and the sorbent dose. Sorption of Cd by Fariman sepiolite is rapid within the first hour of the experiment and then slowly increases until a pseudo equilibrium is approached at 8 h. The results also show that the time-dependent Cd sorption data are better described with pseudo second-order (7〉0.999) than that of pseudo first-order (r2〉0.971) kinetic model. Equilibrium isotherm studies show that the experimental data are better correlated by the Freundlich adsorption isotherm (7〉0.995) than the Langmuir (P〉0.825). It is suggested that both adsorption and cation exchange reactions are responsible for the sorption of Cd by the sepiolite, and the mineral has a very good potential to remove Cd from aqueous solutions.