In this paper, a new algorithm is proposed to remove the effects of aerodynamic optical thermal radiation from a single infrared image. In this method, the joint probability model of gradient distribution is introduce...In this paper, a new algorithm is proposed to remove the effects of aerodynamic optical thermal radiation from a single infrared image. In this method, the joint probability model of gradient distribution is introduced by studying the "global smoothing and local fluctuation" characteristics of the bias field. A prior L0 norm of dark channel is introduced to constrain the latent clear image. Finally, the split Bregman method is used to solve the optimization problem. The effectiveness of the proposed method is verified by a series of experiments, and the results are compared with the results of the existing methods for the correction of thermal radiation effects.展开更多
基金supported by the Key Project of National Natural Science Foundation of China(No.61433007)the National Natural Science Foundation of China(Nos.61671337 and 61701353)
文摘In this paper, a new algorithm is proposed to remove the effects of aerodynamic optical thermal radiation from a single infrared image. In this method, the joint probability model of gradient distribution is introduced by studying the "global smoothing and local fluctuation" characteristics of the bias field. A prior L0 norm of dark channel is introduced to constrain the latent clear image. Finally, the split Bregman method is used to solve the optimization problem. The effectiveness of the proposed method is verified by a series of experiments, and the results are compared with the results of the existing methods for the correction of thermal radiation effects.