A novel composite carrier of folic acid(FA)-polyethyleneimine(PEI)-ethosome(Eth)(FA-PEI-Eth)was developed for the treatment of cancers through loading and targeting delivery of multidrug(including gene and other drugs...A novel composite carrier of folic acid(FA)-polyethyleneimine(PEI)-ethosome(Eth)(FA-PEI-Eth)was developed for the treatment of cancers through loading and targeting delivery of multidrug(including gene and other drugs)into cancer cells.Physical and chemical property tests were done to prove the grafting of the composite.Gel retardation test was done to determine the optimal ratio of DNA@PEI complex,and cytocompatibility tests and tumor cell uptake tests were done to evaluate the efficiency of the composite.The results demonstrated that the FA-PEI-Eth could effectively deliver a gene and other drugs into tumor cells simultaneously,and suggested that this composite would be a promising carrier in tumor-targeted therapy applications.展开更多
Transdermal drug delivery system(TDDS)facilitates the controlled release of active ingredients penetrating through the skin,avoiding the liver first pass effect.Electrospinning is a simple process to fabricate ultrafi...Transdermal drug delivery system(TDDS)facilitates the controlled release of active ingredients penetrating through the skin,avoiding the liver first pass effect.Electrospinning is a simple process to fabricate ultrafine fibers with a higher specific surface area,making them excellent candidates for drug delivery.In current work,a novel silk fibroin(SF)nanofiber loaded with cationic ethosomes(CEs)was prepared via green electrospinning.The data of Fourier transform infrared spectroscopy(FTIR)and laser scanning confocal microscopy(LSCM)confirmed the existence of CEs in the SF nanofibers.The morphology of the nanofibers was not significantly affected by the incorporation of CEs as shown by scanning electron microscopy(SEM)images.The CEs-loaded SF nanofibrous patch(CEs-SFnP)showed good cytocompatibility as proved by both cell counting Kit-8(CCK-8)assay and SEM.Using doxorubicin hydrochloride(Dox)as a model drug,the transdermal performance of CEs-SFnP was evaluated through Franz diffusion cell against mouse skin.The results indicated that CEs-SFnP can effectively deliver drug into the skin,with a much higher permeation rate than the normal nanofibers without CEs.The as-spun CEs-SFnP in this study could find promising applications in TDDS.展开更多
基金Shanghai Science and Technology Committee Project,China(No.18490740400)Open Foundation of Key Laboratory of Science&Technology of Eco-Textile,China(No.Eco-KF-201612)+1 种基金Opening Project of Zhejiang Provincial Preponderant and Characteristic Subject of Key University,Zhejiang Chinese Medical University,China(No.ZYAOX2018035)Project of Health and Family Planning Commission of Zhejiang Province,China(No.2018KY831)
文摘A novel composite carrier of folic acid(FA)-polyethyleneimine(PEI)-ethosome(Eth)(FA-PEI-Eth)was developed for the treatment of cancers through loading and targeting delivery of multidrug(including gene and other drugs)into cancer cells.Physical and chemical property tests were done to prove the grafting of the composite.Gel retardation test was done to determine the optimal ratio of DNA@PEI complex,and cytocompatibility tests and tumor cell uptake tests were done to evaluate the efficiency of the composite.The results demonstrated that the FA-PEI-Eth could effectively deliver a gene and other drugs into tumor cells simultaneously,and suggested that this composite would be a promising carrier in tumor-targeted therapy applications.
基金This work was supported by the Project of the Science&Technology Commission of Shanghai Municipality,China(Nos.18490740400,20DZ2254900).
文摘Transdermal drug delivery system(TDDS)facilitates the controlled release of active ingredients penetrating through the skin,avoiding the liver first pass effect.Electrospinning is a simple process to fabricate ultrafine fibers with a higher specific surface area,making them excellent candidates for drug delivery.In current work,a novel silk fibroin(SF)nanofiber loaded with cationic ethosomes(CEs)was prepared via green electrospinning.The data of Fourier transform infrared spectroscopy(FTIR)and laser scanning confocal microscopy(LSCM)confirmed the existence of CEs in the SF nanofibers.The morphology of the nanofibers was not significantly affected by the incorporation of CEs as shown by scanning electron microscopy(SEM)images.The CEs-loaded SF nanofibrous patch(CEs-SFnP)showed good cytocompatibility as proved by both cell counting Kit-8(CCK-8)assay and SEM.Using doxorubicin hydrochloride(Dox)as a model drug,the transdermal performance of CEs-SFnP was evaluated through Franz diffusion cell against mouse skin.The results indicated that CEs-SFnP can effectively deliver drug into the skin,with a much higher permeation rate than the normal nanofibers without CEs.The as-spun CEs-SFnP in this study could find promising applications in TDDS.