The capabilities of cloud-resolving numerical models, observational instruments and cloud seeding have improved greatly over recent years in China. The subject of this review focuses on the main progresses made in Chi...The capabilities of cloud-resolving numerical models, observational instruments and cloud seeding have improved greatly over recent years in China. The subject of this review focuses on the main progresses made in China in the areas of cloud modeling, field observations, aerosol–cloud interactions, the effects of urbanization on cloud and precipitation, and weather modification.Well-equipped aircraft and ground-based advanced Doppler and polarized radars have been rapidly applied in cloudseeding operations. The combined use of modern techniques such as the Global Positioning System, remote sensing, and Geographical Information Systems has greatly decreased the blindness and uncertainties in weather-modification activities.Weather-modification models based on state-of-the-art cloud-resolving models are operationally run at the National Weather Modification Centre in China for guiding weather-modification programs.Despite important progress having been made, many critical issues or challenges remain to be solved, or require stronger scientific evidence and support, such as the chain of physical events involved in the effects induced by cloud seeding. Current important progresses in measurements and seeding techniques provide the opportunity and possibility to reduce these deficiencies. Long-term scientific projects aimed at reducing these key uncertainties are extremely urgent and important for weather-modification activities in China.展开更多
The Regional Atmospheric Modeling System (RAMS) has been used to investigate the effects of varied giant cloud condensation nuclei (GCCN) concentrations on precipitation characteristics of the spring hailstorms in a s...The Regional Atmospheric Modeling System (RAMS) has been used to investigate the effects of varied giant cloud condensation nuclei (GCCN) concentrations on precipitation characteristics of the spring hailstorms in a semi-arid region. The simulation result shows that this variation has significant effects on the storm microphysical processes as well as on the surface precipitation. The coverage of hail and hail mixing ratio maxima in cloud increases with greater GCCN concentrations. The accumulation zone structure benefits the growth of hail particles. Higher GCCN concentrations lead to more supercooled rain water and cloud water available for freezing. This simulation also shows that increasing GCCN concentrations may produce more rainfall on the surface but less hail precipitation, and the total accumulated precipitation increases while the ice phase precipitation decreases. This effect is stronger in polluted air than in clean air. The surface flow field changes with different GCCN concentrations. The identification index of spring hailstorm is different from that of summer hailstorm with a different aerosol background.展开更多
基金jointly sponsored by the Chinese Natural Science Foundation (Grant Nos. 41005072 and 40575003)the Key Science and Technology Supporting Project of the Ministry of Science and Technology of China (Grant Nos. 2006BAC12B03 and GYHY200806001)the Third Tibetan Plateau Scientific Experiment: Observations for Boundary Layer and Troposphere (GYHY201406001)
文摘The capabilities of cloud-resolving numerical models, observational instruments and cloud seeding have improved greatly over recent years in China. The subject of this review focuses on the main progresses made in China in the areas of cloud modeling, field observations, aerosol–cloud interactions, the effects of urbanization on cloud and precipitation, and weather modification.Well-equipped aircraft and ground-based advanced Doppler and polarized radars have been rapidly applied in cloudseeding operations. The combined use of modern techniques such as the Global Positioning System, remote sensing, and Geographical Information Systems has greatly decreased the blindness and uncertainties in weather-modification activities.Weather-modification models based on state-of-the-art cloud-resolving models are operationally run at the National Weather Modification Centre in China for guiding weather-modification programs.Despite important progress having been made, many critical issues or challenges remain to be solved, or require stronger scientific evidence and support, such as the chain of physical events involved in the effects induced by cloud seeding. Current important progresses in measurements and seeding techniques provide the opportunity and possibility to reduce these deficiencies. Long-term scientific projects aimed at reducing these key uncertainties are extremely urgent and important for weather-modification activities in China.
基金supported by National Natural Science Foundation of China (Grant Nos. 40875080 and 40875002)Ministry of Science and Technology of China (Grant No. 2006BAC12B01-01)
文摘The Regional Atmospheric Modeling System (RAMS) has been used to investigate the effects of varied giant cloud condensation nuclei (GCCN) concentrations on precipitation characteristics of the spring hailstorms in a semi-arid region. The simulation result shows that this variation has significant effects on the storm microphysical processes as well as on the surface precipitation. The coverage of hail and hail mixing ratio maxima in cloud increases with greater GCCN concentrations. The accumulation zone structure benefits the growth of hail particles. Higher GCCN concentrations lead to more supercooled rain water and cloud water available for freezing. This simulation also shows that increasing GCCN concentrations may produce more rainfall on the surface but less hail precipitation, and the total accumulated precipitation increases while the ice phase precipitation decreases. This effect is stronger in polluted air than in clean air. The surface flow field changes with different GCCN concentrations. The identification index of spring hailstorm is different from that of summer hailstorm with a different aerosol background.