Developing well-defined nanostructures with superior surface-enhanced Raman scattering (SERS) performance is a critical and highly desirable goal for the practical applications of SERS in sensing and analysis. Here,...Developing well-defined nanostructures with superior surface-enhanced Raman scattering (SERS) performance is a critical and highly desirable goal for the practical applications of SERS in sensing and analysis. Here, a SERS-active substrate was fabricated by decorating a MoS2 monolayer with Ag nanowire (NW) and nanoparticle (NP) structures, using a spin-coating method. Both experimental and theoretical results indicate that strong SERS signals of rhodamine 6G (R6G) molecules can be achieved at "hotspots" formed in the Ag NW-Ag NP-MoS2 hybrid structure, with an enhancement factor of 106. The SERS enhancement is found to be strongly polarization dependent. The fabricated SERS substrate also exhibits ultrasensitive detection capabilities with a detection limit of 10-11 M, as well as reliable reproducibility and good stability.展开更多
Aggregation of metal nanoparticles plays an important role in surface enhanced Raman scattering (SERS). Here, a strategy of dynamically aggregating/releasing gold nanopartides is demonstrated using a gold-nanofilm-c...Aggregation of metal nanoparticles plays an important role in surface enhanced Raman scattering (SERS). Here, a strategy of dynamically aggregating/releasing gold nanopartides is demonstrated using a gold-nanofilm-coated nanofiber, with the assistance of enhanced optical force and plasmonic photothermal effect. Strong SERS signals of rhodamine 6G are achieved at the hotspots formed in the inter-particle and film-partide nanogaps. The proposed SERS substrate was demonstrated to have a sensitivity of 10-12 M, reliable reproducibility, and good stability.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 11274,395), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT13042) and the Open Fund of the Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications (Jinan University).
文摘Developing well-defined nanostructures with superior surface-enhanced Raman scattering (SERS) performance is a critical and highly desirable goal for the practical applications of SERS in sensing and analysis. Here, a SERS-active substrate was fabricated by decorating a MoS2 monolayer with Ag nanowire (NW) and nanoparticle (NP) structures, using a spin-coating method. Both experimental and theoretical results indicate that strong SERS signals of rhodamine 6G (R6G) molecules can be achieved at "hotspots" formed in the Ag NW-Ag NP-MoS2 hybrid structure, with an enhancement factor of 106. The SERS enhancement is found to be strongly polarization dependent. The fabricated SERS substrate also exhibits ultrasensitive detection capabilities with a detection limit of 10-11 M, as well as reliable reproducibility and good stability.
基金Open Fund of the Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications(Jinan University)National Natural Science Foundation of China(NSFC)(11274395,11774135,61205165)
文摘Aggregation of metal nanoparticles plays an important role in surface enhanced Raman scattering (SERS). Here, a strategy of dynamically aggregating/releasing gold nanopartides is demonstrated using a gold-nanofilm-coated nanofiber, with the assistance of enhanced optical force and plasmonic photothermal effect. Strong SERS signals of rhodamine 6G are achieved at the hotspots formed in the inter-particle and film-partide nanogaps. The proposed SERS substrate was demonstrated to have a sensitivity of 10-12 M, reliable reproducibility, and good stability.
基金This work was supported by the National Natural Science Foundation of China (No.11274395) and the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT13042).