Geohazards induced by the Lushan Ms 7.0 earthquake on April 20, 2013 mainly have four types: collapse, landslide, slope debris flow, and sand-soil liquefaction. These geohazards mainly occurred near the epicenter, on...Geohazards induced by the Lushan Ms 7.0 earthquake on April 20, 2013 mainly have four types: collapse, landslide, slope debris flow, and sand-soil liquefaction. These geohazards mainly occurred near the epicenter, on steep slopes or below cliffs in high mountain and deep valley areas, and at or near fault ends. They have no obvious relationships to active faults, but their relationships to the weathering degree and structures of rock and rock mass are obvious. Compared with the Wenchuan Ms 8.0 earthquake on May 12, 2008, the Lnshan earthquake is relatively little in the impact force and the throwing amount. All of these should be related to the magnitude of this earthquake, not very large but not very little. This character of the Lushan earthquake would make some processes uncompleted so as to bring about some concealed geohazards. Finally, in order to deal with challenges presented by such conceal geohazards, some brief recommendations are put forward.展开更多
At 08:02 on April 20, 2013, a Ms7.0 earthquake occurred in Lushan, Ya'an, in the Longmenshan fault zone, Sichuan. The epicenter was located between Taiping Town and Shuangshi Town, Lushan County and the maximum eart...At 08:02 on April 20, 2013, a Ms7.0 earthquake occurred in Lushan, Ya'an, in the Longmenshan fault zone, Sichuan. The epicenter was located between Taiping Town and Shuangshi Town, Lushan County and the maximum earthquake intensity at the epicenter reached class IX. Field investigations in the epicenter area found that, although buildings were seriously damaged, no obvious surface rupture structure was produced, only some ground fissures and sand blows and water ejection phenomena being seen. An integrated analysis of high-resolution remote sensing image interpretation, mainshock and aftershock distribution, and focal mechanism solutions indicated that this earthquake was an independent rupturing event in the southwestern segment of the Longmenshan fault zone, belonging to the thrust-type earthquake. Ruptures occurred along the south-central segment of the Shuangshi-Dachuan fault and the principal rupture plane dipped SW at 33-43% It is inferred that the Lushan earthquake might be related to the ramp activity of the basal detachment zone (13-19 kin) of the Longmenshan fault zone. Historically, there occurred at least two Ms6-6.5 earthquakes along the Shuangshi-Dachuan fault zone; thus it is thought that the Lushan earthquake, different from the Wenchuan earthquake, was a characteristic one in the southwestern segment of the Longmenshan fault zone. In-situ stress measurements indicated the Lushan earthquake was the result of stress release of the southwestern segment of the Longmenshan fault zone after the Wenchuan earthquake. This paper analyzes the tectonic setting of the seismogenic structure of this earthquake.展开更多
基金financially supported by the Project of China Special Project of Basic Work of Science and Technology (2011FY110100-2)Project of the 12th Five-year National Sci-Tech Support Plan of China (grant No. 2011BAK12B09)+1 种基金the National Science Foundation of China (grant No. 41072269)China Geological Survey (grant No. 1212010914025)
文摘Geohazards induced by the Lushan Ms 7.0 earthquake on April 20, 2013 mainly have four types: collapse, landslide, slope debris flow, and sand-soil liquefaction. These geohazards mainly occurred near the epicenter, on steep slopes or below cliffs in high mountain and deep valley areas, and at or near fault ends. They have no obvious relationships to active faults, but their relationships to the weathering degree and structures of rock and rock mass are obvious. Compared with the Wenchuan Ms 8.0 earthquake on May 12, 2008, the Lnshan earthquake is relatively little in the impact force and the throwing amount. All of these should be related to the magnitude of this earthquake, not very large but not very little. This character of the Lushan earthquake would make some processes uncompleted so as to bring about some concealed geohazards. Finally, in order to deal with challenges presented by such conceal geohazards, some brief recommendations are put forward.
基金part of the investigation achievements made by the Lushan Earthquake Scientific Expedition of the Chinese Academy of Geological Sciences and supported by the SinoProbe-08-01National Key Basic Project (973) (granted number 2008CB425702)China Geological Survey project (granted number 1212011120167)
文摘At 08:02 on April 20, 2013, a Ms7.0 earthquake occurred in Lushan, Ya'an, in the Longmenshan fault zone, Sichuan. The epicenter was located between Taiping Town and Shuangshi Town, Lushan County and the maximum earthquake intensity at the epicenter reached class IX. Field investigations in the epicenter area found that, although buildings were seriously damaged, no obvious surface rupture structure was produced, only some ground fissures and sand blows and water ejection phenomena being seen. An integrated analysis of high-resolution remote sensing image interpretation, mainshock and aftershock distribution, and focal mechanism solutions indicated that this earthquake was an independent rupturing event in the southwestern segment of the Longmenshan fault zone, belonging to the thrust-type earthquake. Ruptures occurred along the south-central segment of the Shuangshi-Dachuan fault and the principal rupture plane dipped SW at 33-43% It is inferred that the Lushan earthquake might be related to the ramp activity of the basal detachment zone (13-19 kin) of the Longmenshan fault zone. Historically, there occurred at least two Ms6-6.5 earthquakes along the Shuangshi-Dachuan fault zone; thus it is thought that the Lushan earthquake, different from the Wenchuan earthquake, was a characteristic one in the southwestern segment of the Longmenshan fault zone. In-situ stress measurements indicated the Lushan earthquake was the result of stress release of the southwestern segment of the Longmenshan fault zone after the Wenchuan earthquake. This paper analyzes the tectonic setting of the seismogenic structure of this earthquake.