目的分析国内外成功老龄化研究现状及发展趋势,为我国人口老龄化研究提供参考。方法检索中国知网和Web of Science核心合集收录的有关成功老龄化研究的文献,并运用CiteSpace软件进行分析。检索时限均为建库至2023年4月30日。结果最终纳...目的分析国内外成功老龄化研究现状及发展趋势,为我国人口老龄化研究提供参考。方法检索中国知网和Web of Science核心合集收录的有关成功老龄化研究的文献,并运用CiteSpace软件进行分析。检索时限均为建库至2023年4月30日。结果最终纳入中文文献199篇、英文文献517篇。国内外发文量总体呈上升趋势,发文期刊具有一定权威性,国内已形成核心作者群。结论国内外研究热点涉及影响因素、研究人群、认知功能等。该领域正处在学科发展应用扩散阶段,老年人身心健康、工作成功老龄化、健康老龄化是发展趋势。未来应加强国际间交流合作,结合我国实际情况,进一步完善成功老龄化相关理论,构建更加科学和本土化的成功老龄化体系,为解决人口老龄化问题提供指导。展开更多
In this paper we study well-posedness and asymptotic behavior of solution of a free boundary problem modeling the growth of multi-layer tumors under the action of an external inhibitor. We first prove that this proble...In this paper we study well-posedness and asymptotic behavior of solution of a free boundary problem modeling the growth of multi-layer tumors under the action of an external inhibitor. We first prove that this problem is locally well-posed in little Holder spaces. Next we investigate asymptotic behavior of the solution. By making delicate analysis of spectrum of the linearization of the stationary free boundary problem and using the linearized stability theorem, we prove that if the surface tension coefficient γ is larger than γ^* 〉 0 the fiat stationary solution is asymptotically stable provided that the constant c representing the ratio between the nutrient diffusion time and the tumor-cell doubling time is sufficient small.展开更多
文摘目的分析国内外成功老龄化研究现状及发展趋势,为我国人口老龄化研究提供参考。方法检索中国知网和Web of Science核心合集收录的有关成功老龄化研究的文献,并运用CiteSpace软件进行分析。检索时限均为建库至2023年4月30日。结果最终纳入中文文献199篇、英文文献517篇。国内外发文量总体呈上升趋势,发文期刊具有一定权威性,国内已形成核心作者群。结论国内外研究热点涉及影响因素、研究人群、认知功能等。该领域正处在学科发展应用扩散阶段,老年人身心健康、工作成功老龄化、健康老龄化是发展趋势。未来应加强国际间交流合作,结合我国实际情况,进一步完善成功老龄化相关理论,构建更加科学和本土化的成功老龄化体系,为解决人口老龄化问题提供指导。
基金Acknowledgments This work is financially supported by the National Natural Science Foundation of China under the grant number 10771223.
文摘In this paper we study well-posedness and asymptotic behavior of solution of a free boundary problem modeling the growth of multi-layer tumors under the action of an external inhibitor. We first prove that this problem is locally well-posed in little Holder spaces. Next we investigate asymptotic behavior of the solution. By making delicate analysis of spectrum of the linearization of the stationary free boundary problem and using the linearized stability theorem, we prove that if the surface tension coefficient γ is larger than γ^* 〉 0 the fiat stationary solution is asymptotically stable provided that the constant c representing the ratio between the nutrient diffusion time and the tumor-cell doubling time is sufficient small.