For some time, whole space feature as a theoretical problem has been a puzzle in mining transient electromagnetic method (TEM). We have introduced a detailed method of calculating the transient response of a vertica...For some time, whole space feature as a theoretical problem has been a puzzle in mining transient electromagnetic method (TEM). We have introduced a detailed method of calculating the transient response of a vertical magnetic bipolar source in a whole space plane layered medium in order to obtain whole space features. After designing a whole space plane layered medium model, equations were established based on boundary conditions in terms of electromagnetic vector potential. Expressions of electromagnetic fields were obtained by solving these equations. The expressions were computed by the Hankel transform after dispersion. The results in a frequency domain were changed into a time domain by using a multinomial cosine transform method. The expressions were correctly validated by comparing them with the analytical solution in half space. The half space and whole space results show that the whole space features are dear, suggesting that the theory of half space is not suitable for the whole space. Our algorithm supplied the technical instrument for studying the distributed features of whole space transient electromagnetic fields.展开更多
基金Project 40674074 supported by the National Natural Science Foundation of China
文摘For some time, whole space feature as a theoretical problem has been a puzzle in mining transient electromagnetic method (TEM). We have introduced a detailed method of calculating the transient response of a vertical magnetic bipolar source in a whole space plane layered medium in order to obtain whole space features. After designing a whole space plane layered medium model, equations were established based on boundary conditions in terms of electromagnetic vector potential. Expressions of electromagnetic fields were obtained by solving these equations. The expressions were computed by the Hankel transform after dispersion. The results in a frequency domain were changed into a time domain by using a multinomial cosine transform method. The expressions were correctly validated by comparing them with the analytical solution in half space. The half space and whole space results show that the whole space features are dear, suggesting that the theory of half space is not suitable for the whole space. Our algorithm supplied the technical instrument for studying the distributed features of whole space transient electromagnetic fields.