Both in Majid's double-bosonization theory and in Rosso's quantum shuffle theory, the rankinductive and type-crossing construction for U_q(g)'s is still a remaining open question. In this paper, working in...Both in Majid's double-bosonization theory and in Rosso's quantum shuffle theory, the rankinductive and type-crossing construction for U_q(g)'s is still a remaining open question. In this paper, working in Majid's framework, based on the generalized double-bosonization theorem we proved before, we further describe explicitly the type-crossing construction of U_q(g)'s for(BCD)_n series directly from type An-1via adding a pair of dual braided groups determined by a pair of(R, R′)-matrices of type A derived from the respective suitably chosen representations. Combining with our results of the first three papers of this series, this solves Majid's conjecture, i.e., any quantum group U_q(g) associated to a simple Lie algebra g can be grown out of U_q(sl_2)recursively by a series of suitably chosen double-bosonization procedures.展开更多
A bosonic construction (with central charge c = 2) of Lie algebras W1+∞ and W1+∞ (glN), as well as the decompositions into irreducible modules are described. And for W1+∞, when restricted to its Virasoro subalgebra...A bosonic construction (with central charge c = 2) of Lie algebras W1+∞ and W1+∞ (glN), as well as the decompositions into irreducible modules are described. And for W1+∞, when restricted to its Virasoro subalgebra Vir, a bosonic construction and the same decomposition for Vir are obtained.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11271131)
文摘Both in Majid's double-bosonization theory and in Rosso's quantum shuffle theory, the rankinductive and type-crossing construction for U_q(g)'s is still a remaining open question. In this paper, working in Majid's framework, based on the generalized double-bosonization theorem we proved before, we further describe explicitly the type-crossing construction of U_q(g)'s for(BCD)_n series directly from type An-1via adding a pair of dual braided groups determined by a pair of(R, R′)-matrices of type A derived from the respective suitably chosen representations. Combining with our results of the first three papers of this series, this solves Majid's conjecture, i.e., any quantum group U_q(g) associated to a simple Lie algebra g can be grown out of U_q(sl_2)recursively by a series of suitably chosen double-bosonization procedures.
基金Project supported by the National Natural Science Foundation of China (No. 10431040, No.10271047, No.19731004) the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institution of the Ministry of Education of China, the Specialized Research Fund for the Doctoral Program of Higher Education of the Ministry of Education of China, the Shanghai Rising-Star Program of the Science and Technology Commission of Shanghai and the Shanghai Priority Academic Discipline of the Education Commission of Shanghai.
文摘A bosonic construction (with central charge c = 2) of Lie algebras W1+∞ and W1+∞ (glN), as well as the decompositions into irreducible modules are described. And for W1+∞, when restricted to its Virasoro subalgebra Vir, a bosonic construction and the same decomposition for Vir are obtained.