Agricultural soils are deficient of phosphorus (P) worldwide. Phosphatic fertilizers are therefore applied to agricultural soils to improve the fertility and to increase the crop yield. However, the effect of phosph...Agricultural soils are deficient of phosphorus (P) worldwide. Phosphatic fertilizers are therefore applied to agricultural soils to improve the fertility and to increase the crop yield. However, the effect of phosphorus application on soil N2O emissions has rarety been studied. Therefore, we conducted a laboratory study to investigate the effects P addition on soil N2O emissions from P deficient alluvial soil under two levels of nitrogen (N) fertilizer and soil moisture. Treatments were arranged as follows: P (0 and 20 mg P kg-1) was applied to soil under two moisture levels of 60 and 90% water filled pore space (WFPS). Each P and moisture treatment was further treated with two levels of N fertilizer (0 and 200 mg N kg-1 as urea). Soil variables including mineral nitrogen (NH4+-N and NO3--N), available P, dissolved organic carbon (DOC), and soil N2O emissions were measured throughout the study period of 50 days. Results showed that addition of P increased N2O emis- sions either under 60% WFPS or 90% WFPS conditions. Higher N2O emissions were observed under 90% WFPS when compared to 60% WFPS. Application of N fertilizer also enhanced N2O emissions and the highest emissions were 141 μg N2O kg-1 h-1 in P+N treatment under 90% WFPS. The results of the present study suggest that P application markedly increases soil N2O emissions under both low and high soil moisture levels, and either with or without N fertilizer application.展开更多
To compare the CH4 oxidation potential among different land uses and seasons, and to observe its response to monsoon precipi- tation pattern and carbon and nitrogen parameters, a one-year study was conducted for diffe...To compare the CH4 oxidation potential among different land uses and seasons, and to observe its response to monsoon precipi- tation pattern and carbon and nitrogen parameters, a one-year study was conducted for different land uses (vegetable field, tilled and non-tilled orchard, upland crops and pine forest) in central subtropical China. Results showed significant differences in CH4 oxidation potential among different land uses (ranging from -3.08 to 0.36 kg CH4 ha-1 year-l). Upland with corn-peanut-sweet potato rotation showed the highest CH4 emission, while pine forest showed the highest CH4 oxidation potential among all land uses. Non-tilled citrus orchard (-0.72 ~ 0.08 kg CHa ha-1 year-1) absorbed two times more CH4 than tilled citrus orchard (-0.38 ~ 0.06 kg CH4 ha-1 year-l). Irrespective of different vegetation, inorganic N fertilizer application significantly influenced CH4 fluxes across the sites (R2 : 0.86, P -- 0.002). Water-filled pore space, soil microbial biomass carbon, and dissolved nitrogen showed significant effects across different land uses (31% to 38% of variability) in one linear regression model. However, their cumulative interaction was significant for pine forest only, which might be attributed to undisturbed microbial communities legitimately responding to other variables, leading to net CH4 oxidation in the soil. These results suggested that i) natural soil condition tended to create win-win situation for CH4 oxidation, and agricultural activities could disrupt the oxidation potentials of the soils; and ii) specific management practices including but not limiting to efficient fertilizer application and utilization, water use efficiency, and less soil disruption might be required to increase the CH4 uptake from the soil.展开更多
基金supported by the National Basic Research Program of China (2012CB417106)the National Natural Science Foundation of China (41171212)
文摘Agricultural soils are deficient of phosphorus (P) worldwide. Phosphatic fertilizers are therefore applied to agricultural soils to improve the fertility and to increase the crop yield. However, the effect of phosphorus application on soil N2O emissions has rarety been studied. Therefore, we conducted a laboratory study to investigate the effects P addition on soil N2O emissions from P deficient alluvial soil under two levels of nitrogen (N) fertilizer and soil moisture. Treatments were arranged as follows: P (0 and 20 mg P kg-1) was applied to soil under two moisture levels of 60 and 90% water filled pore space (WFPS). Each P and moisture treatment was further treated with two levels of N fertilizer (0 and 200 mg N kg-1 as urea). Soil variables including mineral nitrogen (NH4+-N and NO3--N), available P, dissolved organic carbon (DOC), and soil N2O emissions were measured throughout the study period of 50 days. Results showed that addition of P increased N2O emis- sions either under 60% WFPS or 90% WFPS conditions. Higher N2O emissions were observed under 90% WFPS when compared to 60% WFPS. Application of N fertilizer also enhanced N2O emissions and the highest emissions were 141 μg N2O kg-1 h-1 in P+N treatment under 90% WFPS. The results of the present study suggest that P application markedly increases soil N2O emissions under both low and high soil moisture levels, and either with or without N fertilizer application.
基金Supported by the National Natural Science Foundation of China(No.41171212)the National Basic Research Program (973Program) of China(No.2012CB417106)
文摘To compare the CH4 oxidation potential among different land uses and seasons, and to observe its response to monsoon precipi- tation pattern and carbon and nitrogen parameters, a one-year study was conducted for different land uses (vegetable field, tilled and non-tilled orchard, upland crops and pine forest) in central subtropical China. Results showed significant differences in CH4 oxidation potential among different land uses (ranging from -3.08 to 0.36 kg CH4 ha-1 year-l). Upland with corn-peanut-sweet potato rotation showed the highest CH4 emission, while pine forest showed the highest CH4 oxidation potential among all land uses. Non-tilled citrus orchard (-0.72 ~ 0.08 kg CHa ha-1 year-1) absorbed two times more CH4 than tilled citrus orchard (-0.38 ~ 0.06 kg CH4 ha-1 year-l). Irrespective of different vegetation, inorganic N fertilizer application significantly influenced CH4 fluxes across the sites (R2 : 0.86, P -- 0.002). Water-filled pore space, soil microbial biomass carbon, and dissolved nitrogen showed significant effects across different land uses (31% to 38% of variability) in one linear regression model. However, their cumulative interaction was significant for pine forest only, which might be attributed to undisturbed microbial communities legitimately responding to other variables, leading to net CH4 oxidation in the soil. These results suggested that i) natural soil condition tended to create win-win situation for CH4 oxidation, and agricultural activities could disrupt the oxidation potentials of the soils; and ii) specific management practices including but not limiting to efficient fertilizer application and utilization, water use efficiency, and less soil disruption might be required to increase the CH4 uptake from the soil.