For any Pisot number β it is known that the set F(β) ={t : limn→∞‖tβn‖ = 0} is countable, where ‖α‖ is the distance between a real number a and the set of integers. In this paper it is proved that every m...For any Pisot number β it is known that the set F(β) ={t : limn→∞‖tβn‖ = 0} is countable, where ‖α‖ is the distance between a real number a and the set of integers. In this paper it is proved that every member in this set is of the form cβn, where n is a nonnegative integer and e is determined by a linear system of equations. Furthermore, for some self-similar measures μ associated with β, the limit at infinity of the Fourier transforms limn→μ(tβn)≠0 if and only if t is in a certain subset of F(β). This generalizes a similar result of Huang and Strichartz.展开更多
文摘For any Pisot number β it is known that the set F(β) ={t : limn→∞‖tβn‖ = 0} is countable, where ‖α‖ is the distance between a real number a and the set of integers. In this paper it is proved that every member in this set is of the form cβn, where n is a nonnegative integer and e is determined by a linear system of equations. Furthermore, for some self-similar measures μ associated with β, the limit at infinity of the Fourier transforms limn→μ(tβn)≠0 if and only if t is in a certain subset of F(β). This generalizes a similar result of Huang and Strichartz.