The Tibetan Plateau is one of the most important ecological barriers in China.Resolving the internal relations and dynamics ruling the association between regional vegetation and climate change is important to underst...The Tibetan Plateau is one of the most important ecological barriers in China.Resolving the internal relations and dynamics ruling the association between regional vegetation and climate change is important to understand and protect the regional ecosystems.Based on vegetation,temperature and precipitation data of the Tibetan Plateau from 2001 to 2010,we analyze the spatial and temporal variations of vegetation cover over the past 10 years and discuss the vegetation response to climate change using empirical orthogonal function and singular value decomposition.Our results reveal the following:(1) vegetation cover gradually decreases from the southeast to the northwest of the Tibetan Plateau; (2) vegetation cover has increased on the Tibetan Plateau over the past 10 years,mainly in the central and eastern zones; and (3) a significant positive relationship was suggested between vegetation cover during growing season and the temperature in the entire region and with precipitation in the central and southern zones.展开更多
The Limu tin deposits located in the Nanling tin and tungsten-polymetallic ore belt are now facing resource depletion after decades of exploitation.Peripheral mineral exploration therefore has become an urgent task.Us...The Limu tin deposits located in the Nanling tin and tungsten-polymetallic ore belt are now facing resource depletion after decades of exploitation.Peripheral mineral exploration therefore has become an urgent task.Using mineral exploration around the Limu crisis mines as an example,we introduce a breakthrough method of how the three-field theory,i.e.,the material,energy and spatial fields,is applied to intensively studies areas,a history of years of mineral exploitation and complex ore-forming systems.Taking a cue from Limu regional metallogeny,we based our investigation on the metallogenic information from geology,geophysics,geochemistry and remote sensing.We conducted our study of the three-field integrated information system,associated with metallogenic prognoses from deposits,with assignments and calculations which correct and allocate synthetic metallogenic prognosis by relying on GIS.We submitted a synthetic metallogenic prognosis map of tin in Limu where we delineated three ore target areas.A breakthrough was achieved by finding about 4785 t of tin metal outside the Shiziling deposit,which has been confirmed by drilling.The successful application in Limu shows that this three-field theory is of scientific and practical importance and deserves to be extended to utilization.展开更多
文摘The Tibetan Plateau is one of the most important ecological barriers in China.Resolving the internal relations and dynamics ruling the association between regional vegetation and climate change is important to understand and protect the regional ecosystems.Based on vegetation,temperature and precipitation data of the Tibetan Plateau from 2001 to 2010,we analyze the spatial and temporal variations of vegetation cover over the past 10 years and discuss the vegetation response to climate change using empirical orthogonal function and singular value decomposition.Our results reveal the following:(1) vegetation cover gradually decreases from the southeast to the northwest of the Tibetan Plateau; (2) vegetation cover has increased on the Tibetan Plateau over the past 10 years,mainly in the central and eastern zones; and (3) a significant positive relationship was suggested between vegetation cover during growing season and the temperature in the entire region and with precipitation in the central and southern zones.
文摘The Limu tin deposits located in the Nanling tin and tungsten-polymetallic ore belt are now facing resource depletion after decades of exploitation.Peripheral mineral exploration therefore has become an urgent task.Using mineral exploration around the Limu crisis mines as an example,we introduce a breakthrough method of how the three-field theory,i.e.,the material,energy and spatial fields,is applied to intensively studies areas,a history of years of mineral exploitation and complex ore-forming systems.Taking a cue from Limu regional metallogeny,we based our investigation on the metallogenic information from geology,geophysics,geochemistry and remote sensing.We conducted our study of the three-field integrated information system,associated with metallogenic prognoses from deposits,with assignments and calculations which correct and allocate synthetic metallogenic prognosis by relying on GIS.We submitted a synthetic metallogenic prognosis map of tin in Limu where we delineated three ore target areas.A breakthrough was achieved by finding about 4785 t of tin metal outside the Shiziling deposit,which has been confirmed by drilling.The successful application in Limu shows that this three-field theory is of scientific and practical importance and deserves to be extended to utilization.