期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Channel attention based wavelet cascaded network for image super-resolution
1
作者 CHEN Jian huang detian huang Weiqin 《High Technology Letters》 EI CAS 2022年第2期197-207,共11页
Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details o... Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details of reconstructed images.To address this issue,a channel attention based wavelet cascaded network for image super-resolution(CWSR) is proposed.Specifically,a second-order channel attention(SOCA) mechanism is incorporated into the network,and the covariance matrix normalization is utilized to explore interdependencies between channel-wise features.Then,to boost the quality of residual features,the non-local module is adopted to further improve the global information integration ability of the network.Finally,taking the image loss in the spatial and wavelet domains into account,a dual-constrained loss function is proposed to optimize the network.Experimental results illustrate that CWSR outperforms several state-of-the-art methods in terms of both visual quality and quantitative metrics. 展开更多
关键词 image super-resolution(SR) wavelet transform convolutional neural network(CNN) second-order channel attention(SOCA) non-local self-similarity
下载PDF
正则化技术和低秩矩阵在稀疏表示超分辨率算法中的应用 被引量:6
2
作者 黄德天 黄炜钦 +1 位作者 云海姣 郑力新 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第5期868-877,共10页
为了有效地利用图像的特征作为指导重建的先验知识,解决常规超分辨率算法对边缘与结构等细节恢复不足的问题,提出一种改进的超分辨率算法.对待重建图像进行低秩分解,得到不同特征的低秩子图像和稀疏子图像;对于低秩子图像,提出采用基于... 为了有效地利用图像的特征作为指导重建的先验知识,解决常规超分辨率算法对边缘与结构等细节恢复不足的问题,提出一种改进的超分辨率算法.对待重建图像进行低秩分解,得到不同特征的低秩子图像和稀疏子图像;对于低秩子图像,提出采用基于正则化技术的稀疏表示超分辨率算法进行重建,先通过在低秩子图像中寻找相似图像块构造非局部相似正则化项,得到图像的非局部冗余,以保持边缘信息;再通过局部线性嵌入方法构造流形学习正则化项,获得图像的结构先验知识,以增强结构信息.对于稀疏子图像则不参与稀疏表示超分辨率重建,而是采用双三次插值法进行重建.实验结果表明,与其他算法相比,无论在主观视觉效果上,还是在峰值信噪比和结构相似性指标上,文中算法都有显著的提高. 展开更多
关键词 超分辨率 稀疏表示 非局部相似性 局部线性嵌入 低秩矩阵
下载PDF
抗遮挡的相关滤波目标跟踪算法 被引量:2
3
作者 顾培婷 黄德天 +1 位作者 黄炜钦 柳培忠 《华侨大学学报(自然科学版)》 CAS 北大核心 2018年第4期611-617,共7页
针对传统的核相关滤波目标跟踪算法遮挡判断失败的问题,提出一种抗遮挡的核相关滤波目标跟踪算法.首先,在核相关滤波器框架上根据最小二乘分类器获得目标位置.然后,引入一个多尺度滤波器,并通过计算滤波器的响应最大值进行尺度预测.最后... 针对传统的核相关滤波目标跟踪算法遮挡判断失败的问题,提出一种抗遮挡的核相关滤波目标跟踪算法.首先,在核相关滤波器框架上根据最小二乘分类器获得目标位置.然后,引入一个多尺度滤波器,并通过计算滤波器的响应最大值进行尺度预测.最后,在目标模型更新方面,根据目标位置置信图峰值尖锐度的差异性,正确更新模型.实验结果表明:文中算法的平均位置误差为6.18px,在阈值为20px时,平均距离精度为97.68%,平均帧率为30.8帧·s^(-1);其能在复杂背景下有效地解决目标尺度变化、完全遮挡等问题,具有更高的鲁棒性和精确性. 展开更多
关键词 目标跟踪 核相关滤波器 多尺度滤波器 目标模型更新
下载PDF
非局部相似和双边滤波的图像超分重建 被引量:1
4
作者 黄炜钦 黄德天 +2 位作者 顾培婷 柳培忠 骆炎民 《华侨大学学报(自然科学版)》 CAS 北大核心 2018年第6期926-931,共6页
为了提高重建图像的分辨率,提出一种改进的稀疏表示超分重建算法.在稀疏编码阶段,引入非局部相似正则化以改进稀疏编码目标函数,并通过非局部相似正则化获得图像非局部冗余,以保持图像边缘信息.为了进一步恢复图像的边缘细节信息,提出... 为了提高重建图像的分辨率,提出一种改进的稀疏表示超分重建算法.在稀疏编码阶段,引入非局部相似正则化以改进稀疏编码目标函数,并通过非局部相似正则化获得图像非局部冗余,以保持图像边缘信息.为了进一步恢复图像的边缘细节信息,提出一种基于改进双边滤波的全局误差补偿模型,以实现重建图像的误差补偿.实验结果表明:与Bicubic,L1SR,SISR,ANR,NE+LS,NE+NNLS,NE+LLE和A+(16atoms)等算法相比,无论在主观视觉效果,还是在峰值信噪比和结构相似性指标上,所提算法都有显著的提高. 展开更多
关键词 图像处理 超分辨率 稀疏表示 非局部相似性 双边滤波
下载PDF
改进的二阶龙格-库塔超分辨率算法 被引量:1
5
作者 陈剑涛 黄德天 +1 位作者 陈健 朱显丞 《华侨大学学报(自然科学版)》 CAS 2022年第1期127-134,共8页
提出一种改进的二阶龙格-库塔超分辨率算法.首先,提出一种浅层共享编码器,以实现低分辨率图像的浅层特征提取.其次,提出一种深层特征学习单元,并与基于龙格-库塔方法的残差模块相融合,进而构建出一种基于深层特征的残差模块,以提升深层... 提出一种改进的二阶龙格-库塔超分辨率算法.首先,提出一种浅层共享编码器,以实现低分辨率图像的浅层特征提取.其次,提出一种深层特征学习单元,并与基于龙格-库塔方法的残差模块相融合,进而构建出一种基于深层特征的残差模块,以提升深层特征提取能力.实验结果表明:与主流超分辨率算法相比,文中算法在主观视觉效果和客观评价指标方面都具有更好的效果. 展开更多
关键词 超分辨率 卷积神经网络 共享编码器 深度特征
下载PDF
采用稀疏表示和小波变换的超分辨率重建算法
6
作者 张健 黄德天 林炎明 《华侨大学学报(自然科学版)》 CAS 北大核心 2020年第2期250-259,共10页
为了提高超分辨率重建图像的质量,提出一种基于稀疏表示和小波变换的超分辨率重建算法.首先,将小波变换的多尺度性、多方向性与稀疏表示的灵活性相结合,构建一种双稀疏编码(DSC)模型,提高稀疏系数的精度.然后,在双稀疏编码模型中引入局... 为了提高超分辨率重建图像的质量,提出一种基于稀疏表示和小波变换的超分辨率重建算法.首先,将小波变换的多尺度性、多方向性与稀疏表示的灵活性相结合,构建一种双稀疏编码(DSC)模型,提高稀疏系数的精度.然后,在双稀疏编码模型中引入局部线性嵌入正则化项(LLER),以更好地保留图像的结构;在重建过程中,对输入的低分辨率图像进行小波分解,得到3幅不同方向的高频子图,并采用提出的模型对其进行重建.最后,利用逆小波得到最终的高分辨率图像.实验结果表明:与多种主流的超分辨率算法相比,文中算法无论在主观视觉效果还是在峰值信噪比和结构相似度两个客观评价指标上,都取得了更好的效果. 展开更多
关键词 图像处理 超分辨率 稀疏表示 局部线性嵌入 小波变换
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部