期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Local existence and uniqueness of the incompressible Navier-Stokes-Landau-Lifshitz equations with the Dzyaloshinskii-Moriya interaction and V-flow term
1
作者 huang gui-huo WANG Guang-wu +1 位作者 YE Ting-ting QIU Zhen 《广州大学学报(自然科学版)》 CAS 2024年第3期44-57,共14页
In this paper,we prove that there exists a unique local solution for the Cauchy problem of a system of the incompressible Navier-Stokes-Landau-Lifshitz equations with the Dzyaloshinskii-Moriya interaction and V-flow t... In this paper,we prove that there exists a unique local solution for the Cauchy problem of a system of the incompressible Navier-Stokes-Landau-Lifshitz equations with the Dzyaloshinskii-Moriya interaction and V-flow term inR^(2) and R^(3).Our methods rely upon approximating the system with a perturbed parabolic system and parallel transport. 展开更多
关键词 incompressible Navier-Stokes-Landau-Lifshitz equations Dzyaloshinskii-Moriya interac-tion local solution
下载PDF
Local existence and uniqueness of solutions to the evolutionary model for magnetoviscoelasticity
2
作者 YE Ting-ting WANG Guang-wu huang gui-huo 《广州大学学报(自然科学版)》 CAS 2024年第4期77-90,共14页
In this paper,we prove the local existence and uniqueness of solutions to the evolutionary model for magnetoviscoelasticity in R^(2),R^(3).This model consists of an incompressible Navier-Stokes,a regularized system fo... In this paper,we prove the local existence and uniqueness of solutions to the evolutionary model for magnetoviscoelasticity in R^(2),R^(3).This model consists of an incompressible Navier-Stokes,a regularized system for the evolution of the deformation gradient and the Landau-Lifshitz-Gilbert system for the dynamics of the mag-netization.Our approach depends on approximating the system with a sequence of perturbed systems. 展开更多
关键词 the evolutionary model for magnetoviscoelasticity local solution uniqueness perturbed systems
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部