The oxidation of p-xylene to terephthalic acid with molecular oxygen in acetic acids modified carbon dioxide over Co/Mn/Br catalyst was studied in a batch reactor. The results showed that the oxidation of p-xylene to ...The oxidation of p-xylene to terephthalic acid with molecular oxygen in acetic acids modified carbon dioxide over Co/Mn/Br catalyst was studied in a batch reactor. The results showed that the oxidation of p-xylene to terephthalic acid was severely inhibited when carbon dioxide exceeded a certain amount, the conversion of p-xylene decreased rapidly from 100.0% to 3.3% and the yield of terephthalic acid dropped from 42.6% to trace. Whereas the oxidation processes of p-Tolualdchyde to p-Toluic acid and 4-Carboxybenzaldehyde to tcrcphthalic acid were improved when a relative small amount of CO2 v/as added, Further investigation found that this negative effect may be caused by multiphase reactions emerging.展开更多
文摘The oxidation of p-xylene to terephthalic acid with molecular oxygen in acetic acids modified carbon dioxide over Co/Mn/Br catalyst was studied in a batch reactor. The results showed that the oxidation of p-xylene to terephthalic acid was severely inhibited when carbon dioxide exceeded a certain amount, the conversion of p-xylene decreased rapidly from 100.0% to 3.3% and the yield of terephthalic acid dropped from 42.6% to trace. Whereas the oxidation processes of p-Tolualdchyde to p-Toluic acid and 4-Carboxybenzaldehyde to tcrcphthalic acid were improved when a relative small amount of CO2 v/as added, Further investigation found that this negative effect may be caused by multiphase reactions emerging.