采用滤纸培养皿法,以发芽率、发芽势、根长和苗长为指标,研究细叶旱芹(Cyclospermum leptophyllum(Pers.)Sprague ex Britton et P.Wilson)地上部化感物质对4种草坪草和5种牧草受体植物的种子萌发和幼苗生长的影响。结果表明,细叶旱芹...采用滤纸培养皿法,以发芽率、发芽势、根长和苗长为指标,研究细叶旱芹(Cyclospermum leptophyllum(Pers.)Sprague ex Britton et P.Wilson)地上部化感物质对4种草坪草和5种牧草受体植物的种子萌发和幼苗生长的影响。结果表明,细叶旱芹地上部化感物质对4种草坪草和5种牧草的种子萌发和幼苗生长均有抑制作用,其中对种子发芽势抑制最明显,抑制率最高达96.3%;其次是对幼苗根长的抑制作用,抑制率最高达91.1%。通过比较种子萌发和幼苗生长的测定指标,得出5种馏分对草坪草的化感作用为石油醚相>氯仿相>正丁醇相>乙酸乙酯相>水相,而对牧草的化感作用为石油醚相>乙酸乙酯相>氯仿相>正丁醇相>水相。说明不同受体植物对相同萃取相组分的化感作用强弱存在差异,细叶旱芹地上部化感物质主要存在于石油醚馏分中,可进一步从中分离提取活性物质。展开更多
The pulse phase and doppler frequency estimation of X-ray pulsars in dynamic situations and its application in navigation is a problem that has not been fully investigated. In this paper, solutions are proposed to sol...The pulse phase and doppler frequency estimation of X-ray pulsars in dynamic situations and its application in navigation is a problem that has not been fully investigated. In this paper, solutions are proposed to solve this problem under conditions of spacecraft and binary motion. A high-precision doppler frequency (velocity) measurement model as well as a phase (range) measurement model is established. The averaged maximum-likelihood estimator is developed for the dynamic pulse phase estimation. The pulse phase tracking technique is used in the doppler frequency determination. The tracking filter is redesigned and compared with the existing algorithms. The comparison verifies the advantage of the filter algorithm presented in this pa- per. Unlike traditional views, it is found that in dynamic situations, shorter observation interval lengths will result in higher-accuracy phase and frequency estimates as the tracking filter outputs. A photon-level integrated numerical simulation is performed. Simulation results testify to the validity of the proposed phase and doppler frequency estimation scheme, and show that incorporation of velocity measurements as well as the range ones into the navigation estimator will improve the navigation steady-state performance.展开更多
The issue of navigation using binary pulsars is investigated in this paper.We show how the effect of the binary motion is incorporated in the navigation measurement equation.Necessary reference systems and time scales...The issue of navigation using binary pulsars is investigated in this paper.We show how the effect of the binary motion is incorporated in the navigation measurement equation.Necessary reference systems and time scales are introduced and the transformation between different time scales is derived.Based mainly on Damour and Deruelle's binary model and the TEMPO2 software,the timing model resolving the time delay from emission to arrival is established with the solar system,interstellar and binary system delays included,which retains all the terms exceeding 1 ns.The navigation measurement equation is thus built and the parameters needed are listed.A comparison is made between Sheikh's measurement equation and that in this paper.It is found that it is not necessary to introduce a fictitious SSB arrival time as Sheikh does.Near-Earth navigation for the Keplerian orbit in the case of observing one pulsar is investigated.The uncertainties of the orbit parameters are derived using the least square fitting method,which reveals that observing one pulsar enables one to navigate near-Earth spacecraft.展开更多
文摘采用滤纸培养皿法,以发芽率、发芽势、根长和苗长为指标,研究细叶旱芹(Cyclospermum leptophyllum(Pers.)Sprague ex Britton et P.Wilson)地上部化感物质对4种草坪草和5种牧草受体植物的种子萌发和幼苗生长的影响。结果表明,细叶旱芹地上部化感物质对4种草坪草和5种牧草的种子萌发和幼苗生长均有抑制作用,其中对种子发芽势抑制最明显,抑制率最高达96.3%;其次是对幼苗根长的抑制作用,抑制率最高达91.1%。通过比较种子萌发和幼苗生长的测定指标,得出5种馏分对草坪草的化感作用为石油醚相>氯仿相>正丁醇相>乙酸乙酯相>水相,而对牧草的化感作用为石油醚相>乙酸乙酯相>氯仿相>正丁醇相>水相。说明不同受体植物对相同萃取相组分的化感作用强弱存在差异,细叶旱芹地上部化感物质主要存在于石油醚馏分中,可进一步从中分离提取活性物质。
文摘The pulse phase and doppler frequency estimation of X-ray pulsars in dynamic situations and its application in navigation is a problem that has not been fully investigated. In this paper, solutions are proposed to solve this problem under conditions of spacecraft and binary motion. A high-precision doppler frequency (velocity) measurement model as well as a phase (range) measurement model is established. The averaged maximum-likelihood estimator is developed for the dynamic pulse phase estimation. The pulse phase tracking technique is used in the doppler frequency determination. The tracking filter is redesigned and compared with the existing algorithms. The comparison verifies the advantage of the filter algorithm presented in this pa- per. Unlike traditional views, it is found that in dynamic situations, shorter observation interval lengths will result in higher-accuracy phase and frequency estimates as the tracking filter outputs. A photon-level integrated numerical simulation is performed. Simulation results testify to the validity of the proposed phase and doppler frequency estimation scheme, and show that incorporation of velocity measurements as well as the range ones into the navigation estimator will improve the navigation steady-state performance.
基金supported by the National Natural Science Foundation of China (Grant No. 41074023)
文摘The issue of navigation using binary pulsars is investigated in this paper.We show how the effect of the binary motion is incorporated in the navigation measurement equation.Necessary reference systems and time scales are introduced and the transformation between different time scales is derived.Based mainly on Damour and Deruelle's binary model and the TEMPO2 software,the timing model resolving the time delay from emission to arrival is established with the solar system,interstellar and binary system delays included,which retains all the terms exceeding 1 ns.The navigation measurement equation is thus built and the parameters needed are listed.A comparison is made between Sheikh's measurement equation and that in this paper.It is found that it is not necessary to introduce a fictitious SSB arrival time as Sheikh does.Near-Earth navigation for the Keplerian orbit in the case of observing one pulsar is investigated.The uncertainties of the orbit parameters are derived using the least square fitting method,which reveals that observing one pulsar enables one to navigate near-Earth spacecraft.