Resource allocation is an important problem in ubiquitous network. Most of the existing resource allocation methods considering only wireless networks are not suitable for the ubiquitous network environment, and they ...Resource allocation is an important problem in ubiquitous network. Most of the existing resource allocation methods considering only wireless networks are not suitable for the ubiquitous network environment, and they will harm the interest of individual users with instable resource requirements. This paper considers the multi-point video surveillance scenarios in a complex network environment with both wired and wireless networks. We introduce the utility estimated by the total costs of an individual network user. The problem is studied through mathematical modeling and we propose an improved problem-specific branch-and-cut algorithm to solve it. The algorithm follows the divide-and-conquer principle and fully considers the duality feature of network selection. The experiment is conducted by simulation through C and Lingo. And it shows that compared with a centralized random allocation scheme and a cost greed allocation scheme, the proposed scheme has better per- formance of reducing the total costs by 13.0% and 30.6% respectively for the user.展开更多
We present a quantum secret sharing scheme between multiparty (m members in Group 1) and multiparty (n members in Group 2), and analyze its security. This scheme takes EPR pairs in Bell states as quantum resources. In...We present a quantum secret sharing scheme between multiparty (m members in Group 1) and multiparty (n members in Group 2), and analyze its security. This scheme takes EPR pairs in Bell states as quantum resources. In order to obtain the shared key, all members only need to perform Bell measurements, rather than perform any local unitary operation. The total efficiency in this scheme approaches 100% as the classical information exchanged is not necessary except for the eavesdropping checks.展开更多
We present an efficient controlled quantum perfect teleportation scheme. In our scheme, multiple senders can teleport multiple arbitrary unknown multi-qubit states to a single receiver via a previously shared entangle...We present an efficient controlled quantum perfect teleportation scheme. In our scheme, multiple senders can teleport multiple arbitrary unknown multi-qubit states to a single receiver via a previously shared entanglement state with the help of one or more controllers. Furthermore, our scheme has a very good performance in the measurement and operation complexity, since it only needs to perform Bell state and single-particle measurements and to apply Controlled-Not gate and other single-particle unitary operations. In addition, compared with traditional schemes, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher communication efficiency.展开更多
基金Supported by the National Science and Technology Major Project (No.2011ZX03005-004-04)the National Grand Fundamental Research 973 Program of China (No.2011CB302-905)+2 种基金the National Natural Science Foundation of China (No.61170058,61272133,and 51274202)the Research Fund for the Doctoral Program of Higher Education of China (No.20103402110041)the Suzhou Fundamental Research Project (No.SYG201143)
文摘Resource allocation is an important problem in ubiquitous network. Most of the existing resource allocation methods considering only wireless networks are not suitable for the ubiquitous network environment, and they will harm the interest of individual users with instable resource requirements. This paper considers the multi-point video surveillance scenarios in a complex network environment with both wired and wireless networks. We introduce the utility estimated by the total costs of an individual network user. The problem is studied through mathematical modeling and we propose an improved problem-specific branch-and-cut algorithm to solve it. The algorithm follows the divide-and-conquer principle and fully considers the duality feature of network selection. The experiment is conducted by simulation through C and Lingo. And it shows that compared with a centralized random allocation scheme and a cost greed allocation scheme, the proposed scheme has better per- formance of reducing the total costs by 13.0% and 30.6% respectively for the user.
基金supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 90818005)the National Natural Science Foundation of China (Grant Nos. 60903217, 60773032and 60773114)the Ph.D. Program Foundation of Ministry of Education of China (Grant No. 20060358014)
文摘We present a quantum secret sharing scheme between multiparty (m members in Group 1) and multiparty (n members in Group 2), and analyze its security. This scheme takes EPR pairs in Bell states as quantum resources. In order to obtain the shared key, all members only need to perform Bell measurements, rather than perform any local unitary operation. The total efficiency in this scheme approaches 100% as the classical information exchanged is not necessary except for the eavesdropping checks.
基金supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No.90818005)the National Natural Science Foundation of China (Grant Nos.61173187 and 61173-188)+1 种基金the Natural Science Foundation of Anhui Province (Grant No.11040606M141)the Research Program of Anhui Province Education Department (Grant No.KJ2010A009)
文摘We present an efficient controlled quantum perfect teleportation scheme. In our scheme, multiple senders can teleport multiple arbitrary unknown multi-qubit states to a single receiver via a previously shared entanglement state with the help of one or more controllers. Furthermore, our scheme has a very good performance in the measurement and operation complexity, since it only needs to perform Bell state and single-particle measurements and to apply Controlled-Not gate and other single-particle unitary operations. In addition, compared with traditional schemes, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher communication efficiency.