The Cr-doped hydrogen-GLC films were prepared by a hybrid magnetron sputtering system composed of a direct current magnetron sputtering (DC-MS) source of carbon and a high power impulse magnetron sputtering (HIPIMS) s...The Cr-doped hydrogen-GLC films were prepared by a hybrid magnetron sputtering system composed of a direct current magnetron sputtering (DC-MS) source of carbon and a high power impulse magnetron sputtering (HIPIMS) source of Cr with reactive gas of C2H2.The hydrogen-free GLC and Cr-doped GLC films were also prepared for comparison.The influence of substrate bias on the Cr-doped hydrogen-GLC films was investigated.With the increase of substrate bias from 100 V to 250 V,the re-sputtering of weak bonding sp2 firstly occurred and induced an increased sp3 bonding.However,the following sp3 to sp2 transformation resulted in a decreased sp3 bonding.The change trends of surface roughness and friction coefficient with the increased bias voltages were the same as those of sp3 bond.The lowest surface roughness and lowest friction coefficient corresponded to the highest sp3 with the Cr-GLC-H films at the bias voltage of-100 V.展开更多
基金Project(51005226)supported by the Natural Science Foundation of ChinaProject(2010A610161)supported by the Natural Science Foundation of Ningbo Government,ChinaProject(2010D10015)supported by the International Cooperation Foundation of Ningbo Government,China
文摘The Cr-doped hydrogen-GLC films were prepared by a hybrid magnetron sputtering system composed of a direct current magnetron sputtering (DC-MS) source of carbon and a high power impulse magnetron sputtering (HIPIMS) source of Cr with reactive gas of C2H2.The hydrogen-free GLC and Cr-doped GLC films were also prepared for comparison.The influence of substrate bias on the Cr-doped hydrogen-GLC films was investigated.With the increase of substrate bias from 100 V to 250 V,the re-sputtering of weak bonding sp2 firstly occurred and induced an increased sp3 bonding.However,the following sp3 to sp2 transformation resulted in a decreased sp3 bonding.The change trends of surface roughness and friction coefficient with the increased bias voltages were the same as those of sp3 bond.The lowest surface roughness and lowest friction coefficient corresponded to the highest sp3 with the Cr-GLC-H films at the bias voltage of-100 V.