n oscillation condition was proposed and experimentally verified for an elec-troderaeparated piezoelectric sensor (ESPS) in non-electrolyte liquid, it was ex-pressed as , where C_s is the solution capaci-tance , R_q, ...n oscillation condition was proposed and experimentally verified for an elec-troderaeparated piezoelectric sensor (ESPS) in non-electrolyte liquid, it was ex-pressed as , where C_s is the solution capaci-tance , R_q, C_o and w are the motional resistance , static capacitance and resonant an-gle frequency of the crystal , respectively. And Y-tgθ, where θ is the phase shift inthe oscillator. The relationships between the minimum cell constant needed for ES-PS to oscillate and each of the following parameters, permittivity, density and vis-cosity of the liquid as well as the oscillator phase shift were discussed. The″ cease-to-oscillate″ frequency of ESPS was measured. The oscillation ability of ESPS in-creases with increasing permittivity or decreasing density and viscosity of the liq-uid. An oscillator with a larger Y value is helpful to drive ESPS.展开更多
文摘n oscillation condition was proposed and experimentally verified for an elec-troderaeparated piezoelectric sensor (ESPS) in non-electrolyte liquid, it was ex-pressed as , where C_s is the solution capaci-tance , R_q, C_o and w are the motional resistance , static capacitance and resonant an-gle frequency of the crystal , respectively. And Y-tgθ, where θ is the phase shift inthe oscillator. The relationships between the minimum cell constant needed for ES-PS to oscillate and each of the following parameters, permittivity, density and vis-cosity of the liquid as well as the oscillator phase shift were discussed. The″ cease-to-oscillate″ frequency of ESPS was measured. The oscillation ability of ESPS in-creases with increasing permittivity or decreasing density and viscosity of the liq-uid. An oscillator with a larger Y value is helpful to drive ESPS.