Electroreduction of CO_(2)into chemicals is of great importance in the global carbon balance.Although noble-metal based catalysts and single-atom catalysts(SACs)are known to be active for CO_(2)electroreduction reacti...Electroreduction of CO_(2)into chemicals is of great importance in the global carbon balance.Although noble-metal based catalysts and single-atom catalysts(SACs)are known to be active for CO_(2)electroreduction reaction(CO_(2)RR),the high cost of noble-metal and the lack of effective synthesis approaches to prepare SACs have tremendously hindered the application.Non-metal doped carbon materials have attracted great interest because of their reasonable cost,chemical stability and excellent electrical conductivity.Nevertheless,the design and fabrication of highly efficient non-metal doped carbon electrocatalysts for CO_(2)RR to meet industry demands still remains a big challenge.Herein,triphenylphosphine@covalent triazine frameworks(CTFs)composites were employed as precursors to fabricate N,P dual-doped porous carbon catalysts PCTF-X-Y(X represents the carbonization temperature,and Y represents the mass ratio of CTF to triphenylphosphine)for CO_(2)RR.Due to the high specific surface areas and synergistic effect between N and P,the obtained PCTF-1000-5 exhibited high selectivity for CO production up to 84.3%at–0.7 V versus the reversible hydrogen electrode(vs.RHE)and long-term durability over 16 h,which are better than the reported N,P dual-doped carbon catalysts in aqueous media.This work provides a new way to design and fabricate non-metal catalysts for electrocatalysis.展开更多
基金the National Key Research and Development Program of China(2018YFA0208600,2018YFA0704502)NSFC(21871263,22071245,22033008)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(XDB20000000)the Youth Innovation Promotion Association,CAS(Y201850)。
文摘Electroreduction of CO_(2)into chemicals is of great importance in the global carbon balance.Although noble-metal based catalysts and single-atom catalysts(SACs)are known to be active for CO_(2)electroreduction reaction(CO_(2)RR),the high cost of noble-metal and the lack of effective synthesis approaches to prepare SACs have tremendously hindered the application.Non-metal doped carbon materials have attracted great interest because of their reasonable cost,chemical stability and excellent electrical conductivity.Nevertheless,the design and fabrication of highly efficient non-metal doped carbon electrocatalysts for CO_(2)RR to meet industry demands still remains a big challenge.Herein,triphenylphosphine@covalent triazine frameworks(CTFs)composites were employed as precursors to fabricate N,P dual-doped porous carbon catalysts PCTF-X-Y(X represents the carbonization temperature,and Y represents the mass ratio of CTF to triphenylphosphine)for CO_(2)RR.Due to the high specific surface areas and synergistic effect between N and P,the obtained PCTF-1000-5 exhibited high selectivity for CO production up to 84.3%at–0.7 V versus the reversible hydrogen electrode(vs.RHE)and long-term durability over 16 h,which are better than the reported N,P dual-doped carbon catalysts in aqueous media.This work provides a new way to design and fabricate non-metal catalysts for electrocatalysis.