期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury 被引量:23
1
作者 WU Zhi-yuan hui guo-zhen +2 位作者 LU Yi WU Xin GUO Li-he 《Chinese Medical Journal》 SCIE CAS CSCD 2006年第24期2101-2107,共7页
Background Human amniotic epithelial cells (HAECs), which have several characteristics similar to stem cells, therefore could possibly be used in cell therapy without creating legal or ethical problems. In this stud... Background Human amniotic epithelial cells (HAECs), which have several characteristics similar to stem cells, therefore could possibly be used in cell therapy without creating legal or ethical problems. In this study, we transplanted HEACs into the injured spinal cord of rats to investigate if the cells can improve the rats' hindlimb motor function. Methods HAECs were obtained from a piece of fresh amnion, labeled with Hoechst33342, and transplanted into the site of complete midthoracic spinal transections in adult rats. The rats (n=21) were randomly divided into three groups: Sham-operation group (n=7), cells-graft group (n=7), and PBS group (n=7). One rat of each group was killed for histological analysis at the second week after the transplantation. The other six rats of each group were killed for histological analysis after an 8-week behavioral testing. Hindlimb motor function was assessed by using the open-field BBB scoring system. Survival rate of the graft cells was observed at second and eighth weeks after the transplantation. We also detected the myelin sheath fibers around the lesions and the size of the axotomized red nucleus. A one-way ANOVA was used to compare the means among the groups. The significance level was set at P〈0.05. Results The graft HAECs survived for a long time (8 weeks) and integrated into the host spinal cord without immune rejection. Compared with the control group, HAECs can promote the regeneration and sprouting of the axons, improve the hindlimb motor function of the rats (BBB score: cells-graft group 9.0 ± 0.89 vs PBS group 3.7± 1.03, P〈0.01), and inhibit the atrophy of axotomized red nucleus [cells-graft group (526.47±148.42)μm^2 vs PBS group (473.69±164.73) μm^2, P〈0.01]. Conclusion Transplantation of HAECs can improve the hindlimb motor function of rats with spinal cord injury. 展开更多
关键词 spinal cord injury human amniotic epithelial cells TRANSPLANTATION
原文传递
Intracerebroventricular transplantation of human amniotic epithelial cells ameliorates spatial memory deficit in the doubly transgenic mice coexpressing APPswe and PS1△E9.deleted genes 被引量:5
2
作者 XUE Shou-ru CHEN Chong-fang +3 位作者 DONG Wan-li hui guo-zhen LIU Tian-jun GUO Li-he 《Chinese Medical Journal》 SCIE CAS CSCD 2011年第17期2642-2648,共7页
Background Human amniotic epithelial cells (HAECs), which have characteristics of both embryonic and pluripotent stem cells, are therefore a candidate in cell therapy without creating legal or ethical problems. In t... Background Human amniotic epithelial cells (HAECs), which have characteristics of both embryonic and pluripotent stem cells, are therefore a candidate in cell therapy without creating legal or ethical problems. In the present study, we aimed to investigate the effects of intracerebroventricular transplantation of HAECs on doubly transgenic mice of Alzheimer's disease (AD) coexpressing presenilin-1 (PS1) and mutant Sweden amyloid precursor protein (APPswe) genes. Methods The offspring mice genotypes were detected using PCR identification of APPswe and PS1 gene. The doubly transgenic (TG) mice (n=20) and wild-type (WT) mice (n=20) were randomly divided into two groups respectively: the transplantation group treated with HAECs and the control group with phosphate buffered saline. Six radial arm water maze test was used to assess the spatial memory in the TG and WT mice. Amyloid plaques and neurofibrillary tangles were analyzed using congo red and acid-silver methenamine staining respectively. was used to track the survival of HAECs. Immunohistochemistry was used octamer-binding protein 4 (Oct-4) and Nanog in the HAECs. High performance measure acetylcholine in hippocampus. The density of cholinergic neurons in hippocampus was measured using acetylcholinesterase staining. Immunofluorescence cytochemistry to determine the expression of quid chromatography was used to basal forebrain and nerve fibers in Results Amyloid deposition occurred in hippocampus and frontal cortex in the double TG mice aged 8 months, but not in WT mice. The results also showed that transplanted HAECs can survive for at least 8 weeks and migrate to the third ventricle without immune rejection. The graft HAECs can also express the specific marker Oct-4 and Nanog of stem cell. Compared with the control group, transplantation of HAECs can not only significantly improve the spatial memory of the TG mice, but also increase acetylcholine concentration and the number of hippocampal cholinergic neurites. Conclusions These results demonstrate that intracerebroventricular transplantation of HAECs can improve the spatial memory of the double TG mice. The higher content of acetylcholine in hippocampus released by more survived cholinergic neurites is one of the causes of this improvement. 展开更多
关键词 Alzheimer's disease human amniotic epithelial cells transgenic mice spatial memory deficit
原文传递
Treatment of traumatic brain injury in rats with transplantation of human amniotic cells 被引量:4
3
作者 LU Yi hui guo-zhen +3 位作者 WU Zhi-yuan GUO Li-he JI Xun-he WU Xin 《Chinese Medical Journal》 SCIE CAS CSCD 2006年第21期1843-1845,共3页
Traumatic brain injury (TBI), which is an important reason of human mortality and morbidity in industrialized countries, still cannot be treated effectively. Since the self-repair capacity of brain is limited, cellu... Traumatic brain injury (TBI), which is an important reason of human mortality and morbidity in industrialized countries, still cannot be treated effectively. Since the self-repair capacity of brain is limited, cellular transplantation in TBI may be a therapeutic option.Human amniotic cells (HACs) from fertilized ovum are able to differentiate into all the tissues of the body. They can not only express the markers of neuronal and glial cells^1 but also synthesize and release the neurotrophic factors.^2 Moreover, transplanted HACs rarely induce immunologic rejection.^3,4 In this study, we investigated whether HAC cultures conditioned by traumatic brain tissue extracts can acquire the phenotype of neuron, and examined the effects of transplanted HACs on the affected hindlimb of rats with TBI. 展开更多
关键词 brain injuries AMNION TRANSPLANTATION RATS
原文传递
Intraoperative microvascular Doppler monitoring in intracranial aneurysm surgery 被引量:6
4
作者 hui Pin-jing YAN Yan-hong +8 位作者 ZHANG Shi-ming WANG Zhong YU Zheng-quan ZHOU You-xin LI Xiang-dong CUI Gang ZHOU Dai hui guo-zhen LAN Qing 《Chinese Medical Journal》 SCIE CAS CSCD 2013年第13期2424-2429,共6页
Background Surgical treatment of intracranial aneurysms is often compromised by incomplete exclusion of the aneurysm or stenosis of parent vessels. Intraoperative microvascular Doppler (IMD) is an attractive, noninv... Background Surgical treatment of intracranial aneurysms is often compromised by incomplete exclusion of the aneurysm or stenosis of parent vessels. Intraoperative microvascular Doppler (IMD) is an attractive, noninvasive, and inexpensive tool. The present study aimed to evaluate the usefulness and reliability of IMD for guiding clip placement in aneurysm surgery. Methods A total of 92 patients with 101 intracranial aneurysms were included in the study. IMD with a 1.5-mm diameter, 20-MHz microprobe was used before and after clip application to confirm aneurysm obliteration and patency of parent vessels and branching arteries. IMD findings were verified postoperatively with digital subtraction angiography (DSA) or dual energy computed tomography angiography (DE-CTA). Ninety consecutive patients, harboring 108 aneurysms, who underwent surgery without IMD was considered as the control group. Results The microprobe detected all vessels of the Circle of Willis and their major branches. Clips were repositioned in 24 (23.8%) aneurysms on the basis of the IMD findings consistent with incomplete exclusion and/or stenosis. IMD identified persistent weak blood flow through the aneurismal sac of 11 of the 101 (10.9%) aneurysms requiring clip adjustment. Stenosis or occlusion of the parent or branching arteries as indicated by IMD necessitated immediate clip adjustment in 19 aneurysms (18.8%). The mean duration of the IMD procedure was 4.8 minutes. The frequency of clip adjustment (mean: 1.8 times per case) was associated with the size and location of the aneurysm. There were no complications related to the use of IMD, and postoperative angiograms confirmed complete aneurysm exclusion and parent vessel patency. About 8.3% (9/108) aneurysms were unexpectedly incompletely occluded, and 10.2% (11/108) aneurysms and parent vessel stenosis without IMD were detected by postoperative DSA or DE-CTA. IMD could reduce the rate of residual aneurysm and unanticipated vessel stenosis which demonstrated statistically significant advantages compared with aneurysm surgery without IMD. Conclusion IMD is a safe, easily performed, reliable, and valuable tool that is suitable for routine use in intracranial surgery, especially in complicated, large, and giant aneurysms with wide neck or without neck. 展开更多
关键词 intraoperative microvascular Doppler intracranial aneurysm microsurgical management clip hemodynamics
原文传递
A novel full-length gene of human ribosomal protein L14.22 related to human glioma
5
作者 QI Zhen-yu hui guo-zhen +3 位作者 LI Yao ZHOU Zong-xiang GU Shao-hua XIE Yi 《Chinese Medical Journal》 SCIE CAS CSCD 2006年第16期1353-1358,共6页
Background This study was undertaken to obtain differentially expressed genes related to human glioma by cDNA microarray and the characterization of a novel full-length gene. Methods Total RNA was extracted from human... Background This study was undertaken to obtain differentially expressed genes related to human glioma by cDNA microarray and the characterization of a novel full-length gene. Methods Total RNA was extracted from human glioma and normal brain tissues, and mRNA was used as a probe. The results of hybridization procedure were scanned with the computer system. The gene named 507E08 clone was subsequently analyzed by northern blot, bioinformatic approach, and protein expression. Results Fifteen differentially expressed genes were obtained from human glioma by hybridization and scanning for four times. Northern blot analysis confirmed that the 507E08 clone was low expressed in human brain tissue and over expressed in human glioma tissues. The analysis of BLASTn and BLASTx showed that the 507E08 clone was a novel full-length gene, which codes 203 amino acid of protein and is called human ribosomal protein 14.22 gene. The nucleotide sequence had been submitted to the GenBankTM with the accession number of AF329277. After expression in E.coli., protein yielded a major band of apparent molecular mass 22 kDa on an SDS-PAGE gel. Conclusions cDNA microarray technology can be successfully used to identify differentially expressed genes. The novel full-length gene of human ribosomal protein 14.22 may be correlated with the development of human glioma. 展开更多
关键词 GLIOMA ribosomal proteins GENES
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部