Xanthomonas bacteria secrete transcription activator-like effector(TALE)proteins into host cells to activate plant disease susceptibility genes to cause disease,and the process is dependent on interaction between bact...Xanthomonas bacteria secrete transcription activator-like effector(TALE)proteins into host cells to activate plant disease susceptibility genes to cause disease,and the process is dependent on interaction between bacteria TFB domain of TALEs and host plant basal transcription factor IIA gamma subunit(TFIIAγ).The key domain or residues of plant TFIIAγand core residues of bacteria TFB domain that are indispensable for TFIIAγ-TALEs interaction in the process of TALE-carrying Xanthomonas invasion plants are unknown.Here,we showed that the thirdα-helix domain of OsTFIIAγ5/Xa5,especially the 38th,39th,40th and 42th residues were key sites for capturing by TALEs of Xanthomonas oryzae pv.oryzae(Xoo),the causal agent of rice bacterial blight disease.The latter segment of Xoo TFB domain harboring seventy-two amino acid residues was vital for TALE specific binding with host plant OsTFIIAγ5/Xa5.Substitution of some residues in this core region of TFB domain completely compromised capacity of TALEs capturing rice OsTFIIAγ5/Xa5.The rich and conserved arginine residues in this core region of TFB domain were responsible for TALE-dependent plant susceptibility gene activation and virulence of Xoo.These results provide a potential strategy for improving resistance to TALE-carrying pathogens in plants by site-specific modification of key residues of host plant TFIIAγ.展开更多
基金supported by the grants from the National Natural Science Foundation of China (31822042 and 31871946)the Fundamental Research Funds for the Central Universities, China (2662016PY020 and 2662017PY014)
文摘Xanthomonas bacteria secrete transcription activator-like effector(TALE)proteins into host cells to activate plant disease susceptibility genes to cause disease,and the process is dependent on interaction between bacteria TFB domain of TALEs and host plant basal transcription factor IIA gamma subunit(TFIIAγ).The key domain or residues of plant TFIIAγand core residues of bacteria TFB domain that are indispensable for TFIIAγ-TALEs interaction in the process of TALE-carrying Xanthomonas invasion plants are unknown.Here,we showed that the thirdα-helix domain of OsTFIIAγ5/Xa5,especially the 38th,39th,40th and 42th residues were key sites for capturing by TALEs of Xanthomonas oryzae pv.oryzae(Xoo),the causal agent of rice bacterial blight disease.The latter segment of Xoo TFB domain harboring seventy-two amino acid residues was vital for TALE specific binding with host plant OsTFIIAγ5/Xa5.Substitution of some residues in this core region of TFB domain completely compromised capacity of TALEs capturing rice OsTFIIAγ5/Xa5.The rich and conserved arginine residues in this core region of TFB domain were responsible for TALE-dependent plant susceptibility gene activation and virulence of Xoo.These results provide a potential strategy for improving resistance to TALE-carrying pathogens in plants by site-specific modification of key residues of host plant TFIIAγ.