期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于蚁狮优化高斯过程回归的锂电池剩余使用寿命预测
1
作者 冯娜娜 杨明 +2 位作者 惠周利 王瑞洁 宁弘扬 《储能科学与技术》 CAS CSCD 北大核心 2024年第5期1643-1652,共10页
迅速获取精确的锂电池的剩余使用寿命和健康状态,对于维持锂电池的可靠性至关重要。针对锂电池剩余使用寿命(remaining useful life,RUL)预测精度较低,传统的高斯过程回归(Gaussian process regression,GPR)模型的超参数寻优结果不理想... 迅速获取精确的锂电池的剩余使用寿命和健康状态,对于维持锂电池的可靠性至关重要。针对锂电池剩余使用寿命(remaining useful life,RUL)预测精度较低,传统的高斯过程回归(Gaussian process regression,GPR)模型的超参数寻优结果不理想、预测效果差等问题,使用蚁狮优化算法(ant-lion optimization algorithm,ALO)对高斯过程回归的超参数进行寻优,实现锂电池剩余使用寿命的精确预测。首先,根据电池充电过程中电池电压的循环曲线,提取了6个参数作为电池的健康因子,然后采用Pearson相关系数验证健康因子与电池容量的相关关系,最终选出平均放电电压、恒流充电阶段电池存储的充电量、整个充电阶段电池存储的充电量以及时间积分中的放电温度这4个参数作为健康因子。最后,利用支持向量回归(support vector regression,SVR)、GPR和ALO-GPR对锂电池RUL进行预测,对各项指标进行比较分析。并将本工作所提出的模型与其他文献所提出的模型进行了比较。通过NASA锂电池数据集验证了模型的有效性,实验结果表明,所提出ALO-GPR的RUL预测模型误差小,均方根误差控制在1%以内,平均绝对误差控制在0.65%以内,泛化性强,具有良好的应用前景。 展开更多
关键词 锂电池 高斯过程回归 蚁狮优化算法 剩余使用寿命
下载PDF
State of health prediction for lithium-ion batteries based on ensemble Gaussian process regression
2
作者 hui zhouli WANG Ruijie +1 位作者 FENG Nana YANG Ming 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期397-407,共11页
The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators ... The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators and ensemble Gaussian process regression(EGPR)to predict the SOH of LIBs.Firstly,the degradation process of an LIB is analyzed through indirect health indicators(HIs)derived from voltage and temperature during discharge.Next,the parameters in the EGPR model are optimized using the gannet optimization algorithm(GOA),and the EGPR is employed to estimate the SOH of LIBs.Finally,the proposed model is tested under various experimental scenarios and compared with other machine learning models.The effectiveness of EGPR model is demonstrated using the National Aeronautics and Space Administration(NASA)LIB.The root mean square error(RMSE)is maintained within 0.20%,and the mean absolute error(MAE)is below 0.16%,illustrating the proposed approach’s excellent predictive accuracy and wide applicability. 展开更多
关键词 lithium-ion batteryies(LIBs) ensemble Gaussian process regression(EGPR) state of health(SOH) health indicators(HIs) gannet optimization algorithm(GOA)
下载PDF
基于间接健康指标的高斯过程回归对锂电池SOH预测 被引量:6
3
作者 王瑞洁 惠周利 杨明 《储能科学与技术》 CAS CSCD 北大核心 2023年第2期560-569,共10页
锂电池性能会随使用时间增加而逐步退化,若更换不及时,可能造成爆炸等严重事故。快速准确预测电池健康状态(state of health,SOH),对于锂电池系统管理和维护以及安全使用至关重要。本工作提出一种基于间接健康指标(health indicators,H... 锂电池性能会随使用时间增加而逐步退化,若更换不及时,可能造成爆炸等严重事故。快速准确预测电池健康状态(state of health,SOH),对于锂电池系统管理和维护以及安全使用至关重要。本工作提出一种基于间接健康指标(health indicators,HIs)和高斯过程回归(Gaussian process regression,GPR)相结合预测锂电池SOH的机器学习模型。首先,通过分析锂电池放电过程,提取若干易于获得且适合动态操作的直接外部特征作为间接健康指标,并计算它们和SOH的相关性,最终筛选出平均放电电压、等压降放电时间、最高放电温度和平台期放电电压初始骤降值作为健康指标;其次,以上述健康指标作为输入特征,利用GPR算法建立锂电池退化模型,对NASA锂电池数据集进行预测,平均绝对误差(mean absolute error,MAE)不超过2%,均方根误差(root mean square error,RSME)控制在4%之内;最后,将本工作模型与其他常用机器学习模型进行比较,再将模型带入不同实验条件的电池中进行泛化性能分析,最大预测误差控制在6%之内,实验结果表明,本工作提出的间接健康指标和GPR模型具有相对较高的预测精度和优秀的泛化能力。 展开更多
关键词 健康指标 健康状态 高斯过程回归 支持向量机回归
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部