A novel counter-gravity infiltration casting device and corresponding fabricating process for producing open-celled aluminum foams were presented. The experimental results show that defects such as insufficient or exc...A novel counter-gravity infiltration casting device and corresponding fabricating process for producing open-celled aluminum foams were presented. The experimental results show that defects such as insufficient or excessive infiltrating can hardly be found in the foam samples prepared by counter-gravity infiltration casting. The foam materials exhibit excellent mechanical properties. The void content strongly affects the mechanical properties of aluminum foams. The yield stress and plateau stress significantly increase with the decrease of void content. Raising pre-heating temperature and increasing packing pressure are effective to lower the void content in aluminum foams.展开更多
基金Project (51074185) supported by the National Natural Science Foundation of ChinaProjects (CX2009B037, CX2010B120) supported by Doctor Innovative Program of Hunan Province, China
文摘A novel counter-gravity infiltration casting device and corresponding fabricating process for producing open-celled aluminum foams were presented. The experimental results show that defects such as insufficient or excessive infiltrating can hardly be found in the foam samples prepared by counter-gravity infiltration casting. The foam materials exhibit excellent mechanical properties. The void content strongly affects the mechanical properties of aluminum foams. The yield stress and plateau stress significantly increase with the decrease of void content. Raising pre-heating temperature and increasing packing pressure are effective to lower the void content in aluminum foams.