The Global Navigation Satellite System (GNSS) is becoming important for monitoring the variations in the earth's ionosphere based on the total electron content (TEC) and iono- spheric electron density (IED). Th...The Global Navigation Satellite System (GNSS) is becoming important for monitoring the variations in the earth's ionosphere based on the total electron content (TEC) and iono- spheric electron density (IED). The Crustal Movement Observation Network of China (CMONOC), which includes GNSS stations across China's Mainland, enables the continuous monitoring of the ionosphere over China as accurately as possible. A series of approaches for GNSS-based ionospheric remote sensing and software has been proposed and devel- oped by the Institute of Geodesy and Geophysics (IGG) in Wuhan. Related achievements include the retrieval of ionospheric observables from raw GNSS data, differential code biases estimations in satellites and receivers, models of local and regional ionospheric TEC, and algorithms of ionospheric tomography. Based on these achievements, a software for processing GNSS data to determine the variations in ionospheric TEC and IED over China has been designed and developed by IGG. This software has also been installed at the CMONOC data centers belonging to the China Earthquake Administration and China Meteorological Administration. This paper briefly introduces the related research achievements and indicates potential directions of future work.展开更多
In this paper,we develop an approach to study the effect of second-order ionospheric delay on GPS positioning based on the ionosphere-free combination (abbreviated to Lc) of GPS dual-frequency carrier phase observable...In this paper,we develop an approach to study the effect of second-order ionospheric delay on GPS positioning based on the ionosphere-free combination (abbreviated to Lc) of GPS dual-frequency carrier phase observables,in which the first-order ionospheric delay has been eliminated.GPS data from IGS WUHN tracking station during April 9 23,2003 is used to perform the above approach,and results show that the second-order ionospheric delay in GPS so-called ionosphere-free observables will result in the regular southward shift of GPS positioning solution.Additionally,the influence of the Earth's magnetic field on second-order ionospheric delay over the Wuhan area is discussed,and it indicates that the Earth's magnetic field is one of the main factors why second-order ionospheric delay results in the regular southward shift of GPS positioning solution over Wuhan area.展开更多
基金partially funded by the Crustal Movement Observation Network of China(CMONOC)iGMAS,the National Basic Research Program of China(2012CB825604)+4 种基金China Natural Science Funds(41304034,41231064,41204031)China Scholarship Council,and CAS/SAFEA International Partnership Program for Creative Research Teams(KZZD-EW-TZ-05)Beijing Natural Science Funds(4144094)863programs(2012AA121803)the State Key Laboratory of Geodesy and Earth's Dynamics(SKLGED2014-3-1-E,SKLGED2014-3-7-E)
文摘The Global Navigation Satellite System (GNSS) is becoming important for monitoring the variations in the earth's ionosphere based on the total electron content (TEC) and iono- spheric electron density (IED). The Crustal Movement Observation Network of China (CMONOC), which includes GNSS stations across China's Mainland, enables the continuous monitoring of the ionosphere over China as accurately as possible. A series of approaches for GNSS-based ionospheric remote sensing and software has been proposed and devel- oped by the Institute of Geodesy and Geophysics (IGG) in Wuhan. Related achievements include the retrieval of ionospheric observables from raw GNSS data, differential code biases estimations in satellites and receivers, models of local and regional ionospheric TEC, and algorithms of ionospheric tomography. Based on these achievements, a software for processing GNSS data to determine the variations in ionospheric TEC and IED over China has been designed and developed by IGG. This software has also been installed at the CMONOC data centers belonging to the China Earthquake Administration and China Meteorological Administration. This paper briefly introduces the related research achievements and indicates potential directions of future work.
基金supported by the National Science Foundation for Distinguished Young Scholars (Grant No. 40625013)the National Natural Science Foundation of China (Grant No. 40890160)+1 种基金the National High-Tech Research and Development Program of China (Grant No. 2007AA12Z311)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.0909141014)
文摘In this paper,we develop an approach to study the effect of second-order ionospheric delay on GPS positioning based on the ionosphere-free combination (abbreviated to Lc) of GPS dual-frequency carrier phase observables,in which the first-order ionospheric delay has been eliminated.GPS data from IGS WUHN tracking station during April 9 23,2003 is used to perform the above approach,and results show that the second-order ionospheric delay in GPS so-called ionosphere-free observables will result in the regular southward shift of GPS positioning solution.Additionally,the influence of the Earth's magnetic field on second-order ionospheric delay over the Wuhan area is discussed,and it indicates that the Earth's magnetic field is one of the main factors why second-order ionospheric delay results in the regular southward shift of GPS positioning solution over Wuhan area.