期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Infra-Gravity Wave Generation by the Shoaling Wave Groups over Beaches 被引量:1
1
作者 LIN Yu-Hsien hwung hwung-hweng 《China Ocean Engineering》 SCIE EI 2012年第1期1-18,共18页
A physical parameter, fib, which was used to meet the forcing of primary short waves to be off-resonant before wave breaking, has been considered as an applicable parameter in the infra-gravity wave generation. Since ... A physical parameter, fib, which was used to meet the forcing of primary short waves to be off-resonant before wave breaking, has been considered as an applicable parameter in the infra-gravity wave generation. Since a series of modulating wave groups for different wave conditions are perfonned to proceed with the resonant mechanism of infra- gravity waves prior to wave breaking, the amplitude growth of incident bound long wave is assumed to be simply controlled by the normalized bed slope, fib. The results appear a large dependence of the growth rate, a, of incident bound long wave, separated by the three-array method, on the normalized bed slope, fib. High spatial resolution of wave records enables identification of the cross-correlation between squared short-wave envelopes and infra-gravity waves. The cross- shore structure of infra-gravity waves over beaches presents the mechanics of incident bound- and outgoing free long waves with the formation of free standing long waves in the nearshore region. The wave run-up and amplification of infra-gravity waves in the swash zone appear that the additional long waves generated by the breaking process would modify the cross-shore structure of free standing long waves. Finally, this paper would further discuss the contribution of long wave breaking and bottom friction to the energy dissipation of infra-gravity waves based on different slope conditions. 展开更多
关键词 infra-gravity wave low-frequency wave surf zone swash zone
下载PDF
Intermittent slipping of landslide regulated by dilatancy evolution and velocity-weakening friction law: an efficient numerical scheme
2
作者 JAN Chyan-deng YANG Ray-yeng +1 位作者 hwung hwung-hweng CHEN Wen-yau 《Journal of Mountain Science》 SCIE CSCD 2016年第8期1333-1344,共12页
When a block of dense sandy soil moves downhill, the shear-induced soil dilatancy along the basal shear boundary produces a negative value of excess pore pressure that increases the basal frictional resistance. Dilata... When a block of dense sandy soil moves downhill, the shear-induced soil dilatancy along the basal shear boundary produces a negative value of excess pore pressure that increases the basal frictional resistance. Dilatancy angle,Ψ, the degree to which the basal soil dilates due to the shear, normally evolves during slope failure. A study by other researchers shows that if Ψ is constant, the block of dense soil will remain stable(or unstable) sliding when the velocity-weakening rate of the basal friction coefficient of the block is small(or large) enough. Moreover, during unstable sliding processes, the block of dense soil exhibits "periodic" patterns of intermittent slipping. Here, we used a more efficient and accurate numerical scheme to revisit that study. We expanded their model by assuming Ψ evolves during slope failure. Consequently, we acquired completely different results. For instance, even though the velocity-weakening rate of the friction coefficient is fixed at the same smaller(or larger) value that those researchers use, the stable(or unstable) steady states of landslide they predict will inversely change to unstable(or stable) when Ψ decreases(or increases) with the increase of slide displacement to a value small(or large) enough. Particularly, in unstable processes, the soil block exhibits "aperiodic" styles of intermittent slipping, instead of "periodic". We found out that the stick states appearing later last longer(or shorter) in the case of decreasing(or increasing) Ψ. Moreover, because the basic states of landslides with impacts of dilatancy evolution are not steady nor periodic, traditional stability-analysis methods cannot be "directly" used to analyze the stability of such landslides. Here, we broke through this technical problem to a degree. We showed that combining a concept called "quasi-steady-state approximation" with a traditional stability-analysis technique can qualitatively predict the instability onset of the landslides. Through this study, we demonstrated that the combination of Chebyshev collocation(CC) and 4^(th)-order Runge-Kutta methods is more accurate and efficient than the numerical scheme those researchers use. 展开更多
关键词 LANDSLIDE Stability analysis Intermittent slipping Dilatancy angle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部