期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Selectivity of CO_(2)reduction reaction to CO on the graphitic edge active sites of Fe-single-atom and dual-atom catalysts:A combined DFT and microkinetic modeling
1
作者 Ahmad Nuruddin Adhitya Gandaryus Saputro +4 位作者 Arifin Luthfi Maulana Febdian Rusydi Fiki Taufik Akbar hadi teguh yudistira Hermawan Kresno Dipojono 《Carbon Resources Conversion》 EI 2024年第1期21-31,共11页
We study the carbon dioxide reduction reaction(CO_(2)RR)activity and selectivity of Fe single-atom catalyst(Fe-SAC)and Fe dual-atom catalyst(Fe-DAC)active sites at the interior of graphene and the edges of graphitic n... We study the carbon dioxide reduction reaction(CO_(2)RR)activity and selectivity of Fe single-atom catalyst(Fe-SAC)and Fe dual-atom catalyst(Fe-DAC)active sites at the interior of graphene and the edges of graphitic nanopore by using a combination of DFT calculations and microkinetic simulations.The trend of limiting potentials for CO_(2)RR to produce CO can be described by using either the adsorption energy of COOH,CO,or their combination.CO_(2)RR process with reasonable reaction rates can be achieved only on the active site configurations with weak tendencies toward CO poisoning.The efficiency of CO_(2)RR on a catalyst depends on its ability to suppress the parasitic hydrogen evolution reaction(HER),which is directly related to the behavior of H adsorption on the catalyst’s active site.We find that the edges of the graphitic nanopore can act as potential adsorption sites for an H atom,and in some cases,the edge site can bind the H atom much stronger than the main Fe site.The linear scaling between CO and H adsorptions is broken if this condition is met.This condition also allows some edge active site configurations to have their CO_(2)RR limiting potential lower than the HER process favoring CO production over H2 production. 展开更多
关键词 CO_(2)RR FexNy active site Fe-SAC Fe-DAC Graphitic edges DFT Microkinetic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部