Dietary polyunsaturated fatty acids (PUFAs), which are abundant in marine fish oils, have recently received global attention for their prominent anti-obesogenic effects. Among PUFAs, eicosapentaenoic acid (EPA; 20...Dietary polyunsaturated fatty acids (PUFAs), which are abundant in marine fish oils, have recently received global attention for their prominent anti-obesogenic effects. Among PUFAs, eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), which are n-3 long-chain PUFAs widely referred to as omega-3 oils, were reported to prevent the development of obesity in rodents and humans. In the present study, we evaluated the anti-obesity effects of microalgal oil on high-fat induced obese C57BL/6 mice, compared with commercial omega-3 fish oil and vegetable corn oil. Microalgal oil is an inherent mixture of several PUFAs, including EPA, DHA and other fatty acids produced from a marine microalgal strain of Thraustochytriidae sp. derived mutant. It was found to contain more PUFAs (〉80%) and more omega-3 oils than commercial omega-3 fish oil (PUFAs 〉31%) and corn oil (PUFAs 59%). All three types of oils induced weight loss in high-fat-induced obese mice, with the loss induced by microalgal oil being most significant at 9 weeks (10% reduction). However, the oils tested did not improve blood lipid levels, although microalgal oil showed an apparent inhibitory effect on lipid accumulation in the liver. These findings may be attributed to the higher PUFA content, including omega-3 oils of microalgal oil than other oils. Collectively, these findings suggest that microalgal oil, derived from Thraustochytriidae sp. derived mutant, is a prominent candidate for replacement of omega-3 fish oils based on its apparent anti-obesity effect in vivo.展开更多
Bisphenol-A(BPA) has been considered as an endocrine disrupting chemical(EDC) because it can exert estrogenic properties.For bisphenol-S(BPS) and bisphenol-F(BPF) that are BPA analogs and substitutes,their ris...Bisphenol-A(BPA) has been considered as an endocrine disrupting chemical(EDC) because it can exert estrogenic properties.For bisphenol-S(BPS) and bisphenol-F(BPF) that are BPA analogs and substitutes,their risk to estrogendependent cancer has been reported rarely compared with the numerous cases of BPA.In this study,we examined whether BPA,BPS,and BPF can lead to the proliferation,migration,and epithelial mesenchymal transition(EMT) of MCF-7 clonal variant(MCF-7 CV) breast cancer cells expressing estrogen receptors(ERs).In a cell viability assay,BPA,BPS,and BPF significantly increased proliferation of MCF-7 CV cells compared to control(DMSO) as did17β-estradiol(E2).In Western blotting assay,BPA,BPS,and BPF enhanced the protein expression of cell cycle progression genes such as cyclin D1 and E1.In addition,MCF-7 CV cells lost cell to cell contacts and acquired fibroblast-like morphology by the treatment of BPA,BPS,or BPF for 24 hours.In cell migration assay,BPA,BPS,and BPF accelerated the migration capability of MCF-7 CV cells as did E2.In relation with the EMT process,BPA,BPS,and BPF increased the protein expression of N-cadherin,while they decreased the protein expression of Ecadherin.When BPA,BPS,and BPF were co-treated with ICI 182,780,an ER antagonist,proliferation effects were reversed,the expression of cyclin D1 and cyclin E1 was downregulated,and the altered cell migration and expression of N-cadherin and E-cadherin by BPA,BPS,and BPF were restored to the control level.Thus,these results imply that BPS and BPF also have the risk of breast cancer progression as much as BPA in the induction of proliferation and migration of MCF-7 CV cells by regulating the protein expression of cell cycle-related genes and EMT markers via the ER-dependent pathway.展开更多
基金supported by a grant from the KRIBB Research Initiative Program(KGM2211531)supported by Priority Research Centers Program through NRF funded by the Ministry of Education,Science and Technology (2015R1A6A1A04020885)
文摘Dietary polyunsaturated fatty acids (PUFAs), which are abundant in marine fish oils, have recently received global attention for their prominent anti-obesogenic effects. Among PUFAs, eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), which are n-3 long-chain PUFAs widely referred to as omega-3 oils, were reported to prevent the development of obesity in rodents and humans. In the present study, we evaluated the anti-obesity effects of microalgal oil on high-fat induced obese C57BL/6 mice, compared with commercial omega-3 fish oil and vegetable corn oil. Microalgal oil is an inherent mixture of several PUFAs, including EPA, DHA and other fatty acids produced from a marine microalgal strain of Thraustochytriidae sp. derived mutant. It was found to contain more PUFAs (〉80%) and more omega-3 oils than commercial omega-3 fish oil (PUFAs 〉31%) and corn oil (PUFAs 59%). All three types of oils induced weight loss in high-fat-induced obese mice, with the loss induced by microalgal oil being most significant at 9 weeks (10% reduction). However, the oils tested did not improve blood lipid levels, although microalgal oil showed an apparent inhibitory effect on lipid accumulation in the liver. These findings may be attributed to the higher PUFA content, including omega-3 oils of microalgal oil than other oils. Collectively, these findings suggest that microalgal oil, derived from Thraustochytriidae sp. derived mutant, is a prominent candidate for replacement of omega-3 fish oils based on its apparent anti-obesity effect in vivo.
基金supported by a grant from the NextGeneration BioGreen 21 Program(no.PJ011355-2015)supported by Priority Research Centers Program through NRF funded by the Ministry of Education,Science and Technology (2015R1A6A1A04020885)
文摘Bisphenol-A(BPA) has been considered as an endocrine disrupting chemical(EDC) because it can exert estrogenic properties.For bisphenol-S(BPS) and bisphenol-F(BPF) that are BPA analogs and substitutes,their risk to estrogendependent cancer has been reported rarely compared with the numerous cases of BPA.In this study,we examined whether BPA,BPS,and BPF can lead to the proliferation,migration,and epithelial mesenchymal transition(EMT) of MCF-7 clonal variant(MCF-7 CV) breast cancer cells expressing estrogen receptors(ERs).In a cell viability assay,BPA,BPS,and BPF significantly increased proliferation of MCF-7 CV cells compared to control(DMSO) as did17β-estradiol(E2).In Western blotting assay,BPA,BPS,and BPF enhanced the protein expression of cell cycle progression genes such as cyclin D1 and E1.In addition,MCF-7 CV cells lost cell to cell contacts and acquired fibroblast-like morphology by the treatment of BPA,BPS,or BPF for 24 hours.In cell migration assay,BPA,BPS,and BPF accelerated the migration capability of MCF-7 CV cells as did E2.In relation with the EMT process,BPA,BPS,and BPF increased the protein expression of N-cadherin,while they decreased the protein expression of Ecadherin.When BPA,BPS,and BPF were co-treated with ICI 182,780,an ER antagonist,proliferation effects were reversed,the expression of cyclin D1 and cyclin E1 was downregulated,and the altered cell migration and expression of N-cadherin and E-cadherin by BPA,BPS,and BPF were restored to the control level.Thus,these results imply that BPS and BPF also have the risk of breast cancer progression as much as BPA in the induction of proliferation and migration of MCF-7 CV cells by regulating the protein expression of cell cycle-related genes and EMT markers via the ER-dependent pathway.