Let n≥2 be an integer number. In this paper, we investigate the generalized Hyers Ulam- Rassias stability in Banach spaces and also Banach modules over a Banach algebra and a C*-algebra and the stability using the a...Let n≥2 be an integer number. In this paper, we investigate the generalized Hyers Ulam- Rassias stability in Banach spaces and also Banach modules over a Banach algebra and a C*-algebra and the stability using the alternative fixed point of an n-dimensional cubic functional equation in Banach spaces:f(2∑j=1^n-1 xj+xn)+f(2∑j=1^n-1 xj-xn)+4∑j=1^n-1f(xj)=16f(∑j=1^n-1 xj)+2∑j=1^n-1(f(xj+xn)+f(xj-xn)展开更多
文摘Let n≥2 be an integer number. In this paper, we investigate the generalized Hyers Ulam- Rassias stability in Banach spaces and also Banach modules over a Banach algebra and a C*-algebra and the stability using the alternative fixed point of an n-dimensional cubic functional equation in Banach spaces:f(2∑j=1^n-1 xj+xn)+f(2∑j=1^n-1 xj-xn)+4∑j=1^n-1f(xj)=16f(∑j=1^n-1 xj)+2∑j=1^n-1(f(xj+xn)+f(xj-xn)