期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Lie Triple Derivations on Upper Triangular Matrices over a Commutative Ring 被引量:2
1
作者 hai ling li ying wang 《Journal of Mathematical Research and Exposition》 CSCD 2010年第3期415-422,共8页
Let T(n, R) be the Lie algebra consisting of all n× n upper triangular matrices over a commutative ring R with identity 1 and M be a 2-torsion free unital T(n, R)-bimodule. In this paper, we prove that every ... Let T(n, R) be the Lie algebra consisting of all n× n upper triangular matrices over a commutative ring R with identity 1 and M be a 2-torsion free unital T(n, R)-bimodule. In this paper, we prove that every Lie triple derivation d : T(n, R) →M is the sum of a Jordan derivation and a central Lie triple derivation. 展开更多
关键词 Jordan derivation Lie triple derivation upper triangular matrices.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部