期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Terrestrial records of the early Albian Ocean Anoxic Event:Evidence from the Fuxin lacustrine basin,NE China
1
作者 Xiao-Tao Xu Long-Yi Shao +4 位作者 Kenneth A.Eriksson Bo Pang Shuai Wang Cheng-Xue Yang hai-hai hou 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第1期138-157,共20页
The early Albian Oceanic Anoxic Event 1 b(OAE 1 b) is well documented in the Tethys, Pacific and North Atlantic, but few studies have evaluated whether or not terrestrial records of OAE 1 b exist. In order to identify... The early Albian Oceanic Anoxic Event 1 b(OAE 1 b) is well documented in the Tethys, Pacific and North Atlantic, but few studies have evaluated whether or not terrestrial records of OAE 1 b exist. In order to identify terrestrial records of the early Albian OAE 1 b and to infer possible driving mechanisms, an integrated multi-proxy study from the late Aptian to Albian in the Fuxin lacustrine basin was conducted,including thick, organic-rich black mudstones, total organic carbon(TOC), organic carbon isotopes(d13 Corg), mercury concentration(Hg) and results from pyrolysis analyses(S2, Tmaxand HI). Results show three distinct short-term negative d13 Corgexcursions corresponding with relatively high TOC values,which could be counterparts of the Kilian, Paquier and Leenhardt sub-events of the early Albian OAE1 b. Atmospheric CO2 concentration(p CO2) recovered from C3 plant d13 Corgcompositions indicates an increasing trend in Unit C during the early Albian, and there are three short-term increases of p CO2 corresponding to the three sub-events of OAE 1 b at this time interval. We infer that a trend of increasing p CO2 during the Kilian sub-event in the study area is closely related to volcanism. Continental weathering calculated using chemical weathering indices(CIA, WIP and MIA(O)) show an increasing trend during the OAE 1 b interval, likely resulting from warmer and more humid conditions. Mixed sources of terrestrial plants and lacustrine plankton demonstrated by pyrolysis analyses(HI vs. Tmaxand S2 vs. TOC), indicate a terrestrial contribution to the organic-rich sediments of the Kilian, Paquier and Leenhardt sub-events of OAE 1 b. We suggest that a CO2-forced greenhouse effect during the early Albian might have triggered the relatively warm and humid palaeoclimatic conditions, and intensified chemical weathering that combined to create high nutrient and organic matter levels that were flushed into lakes contributing to eutrophication and anoxia in lacustrine and in contemporaneous oceanic systems. 展开更多
关键词 Fuxin Basin Early Albian Organic carbon isotopes Ocean Anoxic Event 1b Terrestrial records
下载PDF
Continental chemical weathering during the Early Cretaceous Oceanic Anoxic Event(OAE1b): a case study from the Fuxin fluvio-lacustrine basin, Liaoning Province,NE China 被引量:1
2
作者 Xiao-Tao Xu Long-Yi Shao +5 位作者 Bo Lan Shuai Wang Jason Hilton Jian-Yi Qin hai-hai hou Jie Zhao 《Journal of Palaeogeography》 SCIE CSCD 2020年第2期246-266,共21页
This study focuses on Early Cretaceous mudstones from the Shahai and Fuxin formations in the Fuxin continental basin. We analyse chemical weathering, land surface temperatures and palaeoclimates based on chemical weat... This study focuses on Early Cretaceous mudstones from the Shahai and Fuxin formations in the Fuxin continental basin. We analyse chemical weathering, land surface temperatures and palaeoclimates based on chemical weathering indices, and emphasize the implications of continental chemical weathering on nutrient fluxes into lakes and oceans.According to Cr and Ni abundance, Al2O3-TiO2, La/Sc-Th/Co and V-Ni-Th×10 plots, as well as rare earth element(REE)analysis, mudstone samples from the Shahai and Fuxin formations were derived from the same type of provenance comprising mainly felsic igneous rocks. Chemical weathering trends reflected by the Chemical Index of Alteration(CIA),Weathering Index of Parker(WIP) and the Mafic Index of Alteration for Oxidative weathering environments(MIA(O)) are consistent with each other and allow the geological succession to be divided into four stages. Land surface temperatures of the Shahai and Fuxin formations are estimated based on the linear relationship of CIA to temperature,and also can be divided into four stages consistent with those determined from chemical weathering trends. During Stage A(early part of the late Aptian) chemical weathering and land surface temperatures were relatively low and showed characteristic high fluctuations, while Stage B(latest Aptian) represented a transitional period where weathering rates and temperatures increased, and high amplitude fluctuations continued. Conditions changed markedly in Stage C(early Albian) with very high and stable weathering, and warm, humid climates, while in Stage D(middle and late Albian) conditions returned to low chemical weathering and land surface temperatures. These stages of chemical weathering and land surface temperature fluctuations represent responses to global climate fluctuations during the Early Cretaceous, with the early Albian high weathering intensities and warm, humid climates combining to create high nutrient levels that would have flushed through rivers into lakes and ultimately oceans. This correlates stratigraphically with the development of Early Cretaceous black shales during Ocean Anoxic Event 1 b, showing the importance of continental weathering regimes as a causal mechanism for lake and ocean anoxia. 展开更多
关键词 Chemical weathering indices Land surface temperature MUDSTONE Greenhouse conditions Ocean Anoxic Event 1 b Black shales
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部