OBJECTIVE To access the efficacy and safety of the double-ProGlide technique for the femoral vein access-site closure in cryoballoon ablation with uninterrupted oral anticoagulants(OAC),and its impact on the electroph...OBJECTIVE To access the efficacy and safety of the double-ProGlide technique for the femoral vein access-site closure in cryoballoon ablation with uninterrupted oral anticoagulants(OAC),and its impact on the electrophysiology laboratory time as well as hospital stay after the procedure in this observational study.METHODS Patients with atrial fibrillation undergoing cryoballoon ablation with uninterrupted OAC at Department of Cardiology,Beijing Anzhen Hospital,Capital Medical University,Beijing,China from May 2019 to May 2021 were enrolled in this study.From October 2020,double-ProGlide technique was consistently used for hemostasis(ProGlide group),and before that conventional manual compression was utilized(manual compression group).The occurrence of vascular and groin complications was accessed during the hospital stay and until the three-month follow-up.RESULTS A total of 140 participants(69.30%of male,mean age:59.21±10.29 years)were evaluated,70 participants being in each group.Immediate hemostasis was achieved in all the patients with ProGlide closure.No major vascular complications were found in the ProGlide group while two major vascular complications were occurred in the manual compression group.The incidence of any groin complication was obviously higher in subjects with manual compression than patients with ProGlide devices(15.71%vs.2.86%,P=0.009).In addition,compared with the manual compression group,the ProGlide group was associated with significantly shorter total time in the electrophysiology laboratory[112.0(93.3–128.8)min vs.123.5(107.3–158.3)min,P=0.006],time from sheath removal until venous site hemostasis[3.8(3.4–4.2)min vs.8.0(7.6–8.5)min,P<0.001],bed rest time[8.0(7.6–8.0)h vs.14.1(12.0–17.6)h,P<0.001]and hospital stay after the procedure[13.8(12.5–17.8)h vs.38.0(21.5–41.0)h,P<0.001].CONCLUSIONS Utilization of the double-ProGlide technique for hemostasis after cryoballoon ablation with uninterrupted OAC is feasible and safe,which has the clinical benefit in reducing the total electrophysiology laboratory time and the hospital stay length after the procedure.展开更多
Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different ...Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.展开更多
Cu/Al multilayers were produced by high-temperature accumulative roll bonding(ARB)methods up to three passes.To achieve a high bonding strength,prior to ARB processing,the Cu and Al sheets were heated to 350,400,450 a...Cu/Al multilayers were produced by high-temperature accumulative roll bonding(ARB)methods up to three passes.To achieve a high bonding strength,prior to ARB processing,the Cu and Al sheets were heated to 350,400,450 and 500 ℃,respectively.The mechanical properties were evaluated by tensile tests.The microstructure was examined by optical microscopy and scanning electron microscopy equipped with energy dispersive spectrometry.The ultimate tensile stress,the grain size and the thickness of diffusion layer of lamellar composites increase with rolling temperature.When the rolling temperature is 400 ℃,the laminates show the highest ductility,but the yield stress is the lowest.As the rolling temperature further increases,both the yield stress and the ultimate tensile stress increase and the ductility decreases slightly.The mechanical properties of lamellar composites processed by low and high temperature ARB are determined by grain size and the thickness of diffusion layer,respectively.展开更多
An Al−3.6Cu−1Li alloy was subjected to room temperature rolling and cryorolling to investigate their effects on microstructure evolution and mechanical properties.The microstructure and aging characteristics of the ro...An Al−3.6Cu−1Li alloy was subjected to room temperature rolling and cryorolling to investigate their effects on microstructure evolution and mechanical properties.The microstructure and aging characteristics of the room temperature-rolled and the cryorolled alloys with 70%and 90%of thickness reductions were studied by microstructure analysis and mechanical tests.The samples subjected to cryorolling with 90%of thickness reduction have high strength and good toughness.This is mainly due to the inhibition of dynamic recovery and the accumulation of high-density dislocations in cryorolled samples.In addition,the artificial aging reveals that the temperature at which peak hardness is attained is inversely proportional to the deformation amount and directly proportional to the rolling temperature.Moreover,bright field images of cryorolled samples after aging indicate the existence of T1(Al2CuLi)precipitates.This suggests that the high stored strain energy enhances the aging kinetics of the alloy,which further promotes the nucleation of T1 phases.展开更多
Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples wer...Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples were examined via transmission electron microscopy,and their mechanical properties were measured via tensile and microhardness testing.Results indicate that ultrafine grains in ARB-processed sheets were further refined by subsequent rolling,and the grain size became finer with reducing rolling temperature.The mean grain size of 666 nm in the sheets subjected to ARB was refined to 346 or 266 nm,respectively,via subsequent cold rolling or cryorolling(83 K).Subsequent cryorolling resulted in ultrafine-grained sheets of higher strength and ductility than those of the sheets subjected to cold rolling.展开更多
An FeMo-alloy-doped β-SiA1ON (FeMo/β-SiA1ON) composite was fabricated via a reaction-bonding method using raw materials of Si, Al2O3, A1N, FeMo, and Sm2O3. The effects of FeMo on the microstructure and mechanical ...An FeMo-alloy-doped β-SiA1ON (FeMo/β-SiA1ON) composite was fabricated via a reaction-bonding method using raw materials of Si, Al2O3, A1N, FeMo, and Sm2O3. The effects of FeMo on the microstructure and mechanical properties of the composite were investi- gated. Some properties of the composite, including its bending strength at 700℃ and after oxidization at 700℃ for 24 h in air, thermal shock resistance and corrosion resistance to molten aluminum, were also evaluated. The results show that the density, toughness, bending strength, and thermal shock resistance of the composite are obviously improved with the addition of an FeMo alloy. In addition, other properties of the composite such as its high-temperature strength and oxidized strength are also improved by the addition of FeMo alloy, and its corrosion re- sistance to molten aluminum is maintained. These findings indicate that the developed FeMo/β-SiA1ON composite exhibits strong potential for application to molten aluminum environments.展开更多
In order to obtain good strength−plasticity synergy for a medium entropy alloy(MEA)CrCoNi,cold rolling,asymmetric rolling,cryorolling and asymmetric-cryorolling with subsequent annealing at different temperatures were...In order to obtain good strength−plasticity synergy for a medium entropy alloy(MEA)CrCoNi,cold rolling,asymmetric rolling,cryorolling and asymmetric-cryorolling with subsequent annealing at different temperatures were conducted.The results showed that the asymmetric-cryorolled alloy achieved a high strength of over 1.6 GPa.After annealing at 1073 K,it retained a high strength of~1 GPa while the elongation reached nearly 60%.After annealing,the heterogeneous characteristics were formed in asymmetric-cryorolled samples,which were found to be more distinct than those of the samples subjected to asymmetric rolling.This resulted in the generation of high strength and ductility.展开更多
To investigate the superplastic deformation behavior of cryorolled Ti-6Al-4V titanium alloy,tensile tests were carried out at760℃and 830℃with different strain rate.The evolution of grain and micro structure has been...To investigate the superplastic deformation behavior of cryorolled Ti-6Al-4V titanium alloy,tensile tests were carried out at760℃and 830℃with different strain rate.The evolution of grain and micro structure has been studied using transmission electron microscopy and electron backscatter diffraction.When the tensile temperature was 760℃(<0.5T_(m),T_(m)is absolute melting point of alloy.)and the strain rate was 5×10^(-4)s^(-1),the fracture elongation of the sample reached 385%,showing good low-temperature superplasticity.Compared with the tensile temperature of 760℃,the fracture elongation of the s ample at 830℃was lower due to grain coarsening and oxidation.The strain rate sensitivity value m of all samples was larger than0.3,which confirmed that the cryorolled Ti-6A1-4V titanium alloy with a non-equiaxed grains structure can achieve high superplasticity at a temperature lower than 0.5T_(m),and indicated that the main deformation mechanisms in the tensile test at760-830℃were grain rotation and grain boundary sliding.After the tensile test,the average grain size of all samples was less than 5μm,in which significant dynamic recrystallization and recovery occurred.展开更多
Magnesium(Mg)alloys have been extensively used in various fields,such as aerospace,automobile,electronics,and biomedical industries,due to their high specific strength and stiff ness,excellent vibration absorption,ele...Magnesium(Mg)alloys have been extensively used in various fields,such as aerospace,automobile,electronics,and biomedical industries,due to their high specific strength and stiff ness,excellent vibration absorption,electromagnetic shielding eff ect,good machinability,and recyclability.Friction stir processing(FSP)is a severe plastic deformation technique,based on the principle of friction stir welding.In addition to introducing the basic principle and advantages of FSP,this paper reviews the studies of FSP in the modification of the cast structure,superplastic deformation behavior,preparation of finegrained Mg alloys and Mg-based surface composites,and additive manufacturing.FSP not only refines,homogenizes,and densifies the microstructure,but also eliminates the cast microstructure defects,breaks up the brittle and network-like phases,and prepares fine-grained,ultrafine-,and nano-grained Mg alloys.Indeed,FSP significantly improves the comprehensive mechanical properties of the alloys and achieves low-temperature and/or high strain rate superplasticity.Furthermore,FSP can produce particle-and fiber-reinforced Mg-based surface composites.As a promising additive manufacturing technique of light metals,FSP enables the additive manufacturing of Mg alloys.Finally,we prospect the future research direction and application with friction stir processed Mg alloys.展开更多
基金supported by the National Natural Science Foundation of China(No.81100143)the Beijing Nova Program(Z121107002512053)+4 种基金the Beijing Health System High Level Health Technology Talent Cultivation Plan(No.2013-3-013)the Beijing Outstanding Talent Training Program(No.2014000021223ZK32)the Beijing National Science Foundation(No.7212100)the Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support(ZYLX201303)the National Key Clinical Speciality Construction Project。
文摘OBJECTIVE To access the efficacy and safety of the double-ProGlide technique for the femoral vein access-site closure in cryoballoon ablation with uninterrupted oral anticoagulants(OAC),and its impact on the electrophysiology laboratory time as well as hospital stay after the procedure in this observational study.METHODS Patients with atrial fibrillation undergoing cryoballoon ablation with uninterrupted OAC at Department of Cardiology,Beijing Anzhen Hospital,Capital Medical University,Beijing,China from May 2019 to May 2021 were enrolled in this study.From October 2020,double-ProGlide technique was consistently used for hemostasis(ProGlide group),and before that conventional manual compression was utilized(manual compression group).The occurrence of vascular and groin complications was accessed during the hospital stay and until the three-month follow-up.RESULTS A total of 140 participants(69.30%of male,mean age:59.21±10.29 years)were evaluated,70 participants being in each group.Immediate hemostasis was achieved in all the patients with ProGlide closure.No major vascular complications were found in the ProGlide group while two major vascular complications were occurred in the manual compression group.The incidence of any groin complication was obviously higher in subjects with manual compression than patients with ProGlide devices(15.71%vs.2.86%,P=0.009).In addition,compared with the manual compression group,the ProGlide group was associated with significantly shorter total time in the electrophysiology laboratory[112.0(93.3–128.8)min vs.123.5(107.3–158.3)min,P=0.006],time from sheath removal until venous site hemostasis[3.8(3.4–4.2)min vs.8.0(7.6–8.5)min,P<0.001],bed rest time[8.0(7.6–8.0)h vs.14.1(12.0–17.6)h,P<0.001]and hospital stay after the procedure[13.8(12.5–17.8)h vs.38.0(21.5–41.0)h,P<0.001].CONCLUSIONS Utilization of the double-ProGlide technique for hemostasis after cryoballoon ablation with uninterrupted OAC is feasible and safe,which has the clinical benefit in reducing the total electrophysiology laboratory time and the hospital stay length after the procedure.
基金funded by National Key R&D Program of China(No.2021YFB3401200)the National Natural Science Foundation of China(No.51875308)the Beijing Nature Sciences Fund-Haidian Originality Cooperation Project(L212002).
文摘Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.
基金Project(51674303) supported by the National Natural Science Foundation of ChinaProject supported by National Youth Thousand Plan of China+2 种基金Project(2018RS3015) supported by Huxiang High-Level Talent Gathering Program of Hunan Province,ChinaProject(2019CX006) supported by Innovation Driven Program of Central South University,ChinaProject supported by the Research Fund of the Key Laboratory of High Performance Complex Manufacturing at Central South University,China
文摘Cu/Al multilayers were produced by high-temperature accumulative roll bonding(ARB)methods up to three passes.To achieve a high bonding strength,prior to ARB processing,the Cu and Al sheets were heated to 350,400,450 and 500 ℃,respectively.The mechanical properties were evaluated by tensile tests.The microstructure was examined by optical microscopy and scanning electron microscopy equipped with energy dispersive spectrometry.The ultimate tensile stress,the grain size and the thickness of diffusion layer of lamellar composites increase with rolling temperature.When the rolling temperature is 400 ℃,the laminates show the highest ductility,but the yield stress is the lowest.As the rolling temperature further increases,both the yield stress and the ultimate tensile stress increase and the ductility decreases slightly.The mechanical properties of lamellar composites processed by low and high temperature ARB are determined by grain size and the thickness of diffusion layer,respectively.
基金Project(2019YFB2006500)supported by the National Key Research and Development Program of ChinaProject(51674303)supported by the National Natural Science Foundation of China+2 种基金Project(2018RS3015)supported by the Huxiang High-Level Talent Gathering Project of Hunan Province,ChinaProject(2019CX006)supported by the Innovation Driven Program of Central South University,ChinaProject supported by the Research Fund of the Key Laboratory of High Performance Complex Manufacturing at Central South University,China。
文摘An Al−3.6Cu−1Li alloy was subjected to room temperature rolling and cryorolling to investigate their effects on microstructure evolution and mechanical properties.The microstructure and aging characteristics of the room temperature-rolled and the cryorolled alloys with 70%and 90%of thickness reductions were studied by microstructure analysis and mechanical tests.The samples subjected to cryorolling with 90%of thickness reduction have high strength and good toughness.This is mainly due to the inhibition of dynamic recovery and the accumulation of high-density dislocations in cryorolled samples.In addition,the artificial aging reveals that the temperature at which peak hardness is attained is inversely proportional to the deformation amount and directly proportional to the rolling temperature.Moreover,bright field images of cryorolled samples after aging indicate the existence of T1(Al2CuLi)precipitates.This suggests that the high stored strain energy enhances the aging kinetics of the alloy,which further promotes the nucleation of T1 phases.
基金financial supports from the National Key Research and Development Program of China (No. 2019YFB2006500)the National Natural Science Foundation of China (No. 51674303)+2 种基金the Huxiang High-level Talent Gathering Project of Hunan Province, China (No. 2018RS3015)the Innovation Driven Program of Central South University, China (No. 2019CX006)the Research Fund of the Key Laboratory of High Performance Complex Manufacturing at Central South University, China。
文摘Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples were examined via transmission electron microscopy,and their mechanical properties were measured via tensile and microhardness testing.Results indicate that ultrafine grains in ARB-processed sheets were further refined by subsequent rolling,and the grain size became finer with reducing rolling temperature.The mean grain size of 666 nm in the sheets subjected to ARB was refined to 346 or 266 nm,respectively,via subsequent cold rolling or cryorolling(83 K).Subsequent cryorolling resulted in ultrafine-grained sheets of higher strength and ductility than those of the sheets subjected to cold rolling.
基金financially supported by the National Natural Science Foundation of China (No. 51272208)the Program for New Century Excellent Talents in University (NCET–12–0454)the Program for Young Excellent Talents in Shaanxi Province, China (2013KJXX–50)
文摘An FeMo-alloy-doped β-SiA1ON (FeMo/β-SiA1ON) composite was fabricated via a reaction-bonding method using raw materials of Si, Al2O3, A1N, FeMo, and Sm2O3. The effects of FeMo on the microstructure and mechanical properties of the composite were investi- gated. Some properties of the composite, including its bending strength at 700℃ and after oxidization at 700℃ for 24 h in air, thermal shock resistance and corrosion resistance to molten aluminum, were also evaluated. The results show that the density, toughness, bending strength, and thermal shock resistance of the composite are obviously improved with the addition of an FeMo alloy. In addition, other properties of the composite such as its high-temperature strength and oxidized strength are also improved by the addition of FeMo alloy, and its corrosion re- sistance to molten aluminum is maintained. These findings indicate that the developed FeMo/β-SiA1ON composite exhibits strong potential for application to molten aluminum environments.
基金supported by the Hunan High-Tech Industry Science and Technology Innovation Leading Plan,China(No.2020GK2032)the Huxiang High-Level Talent Gathering Project of Hunan Province,China(No.2018RS3015)+1 种基金the Innovation Driven Program of Central South University,China(No.2019CX006)the Research Fund of the Key Laboratory of High Performance Complex Manufacturing at Central South University,China。
文摘In order to obtain good strength−plasticity synergy for a medium entropy alloy(MEA)CrCoNi,cold rolling,asymmetric rolling,cryorolling and asymmetric-cryorolling with subsequent annealing at different temperatures were conducted.The results showed that the asymmetric-cryorolled alloy achieved a high strength of over 1.6 GPa.After annealing at 1073 K,it retained a high strength of~1 GPa while the elongation reached nearly 60%.After annealing,the heterogeneous characteristics were formed in asymmetric-cryorolled samples,which were found to be more distinct than those of the samples subjected to asymmetric rolling.This resulted in the generation of high strength and ductility.
基金financial support from the High-tech Industry Technology Innovation Leading Plan of Hunan Province(Grant No.:2020GK2032)the Research Fund of the Key Laboratory of High-Performance Complex Manufacturing at Central South University。
文摘To investigate the superplastic deformation behavior of cryorolled Ti-6Al-4V titanium alloy,tensile tests were carried out at760℃and 830℃with different strain rate.The evolution of grain and micro structure has been studied using transmission electron microscopy and electron backscatter diffraction.When the tensile temperature was 760℃(<0.5T_(m),T_(m)is absolute melting point of alloy.)and the strain rate was 5×10^(-4)s^(-1),the fracture elongation of the sample reached 385%,showing good low-temperature superplasticity.Compared with the tensile temperature of 760℃,the fracture elongation of the s ample at 830℃was lower due to grain coarsening and oxidation.The strain rate sensitivity value m of all samples was larger than0.3,which confirmed that the cryorolled Ti-6A1-4V titanium alloy with a non-equiaxed grains structure can achieve high superplasticity at a temperature lower than 0.5T_(m),and indicated that the main deformation mechanisms in the tensile test at760-830℃were grain rotation and grain boundary sliding.After the tensile test,the average grain size of all samples was less than 5μm,in which significant dynamic recrystallization and recovery occurred.
基金sponsorship from the National Natural Science Foundation of China(Nos.51574192,51404180,51974220,and U1760201)the Key Industrial Research Program of Shaanxi Province,China(No.2017ZDXMGY-037)+1 种基金the National Key Research and Development Program of China(No.Z20180407)the Youth Innovation Team of Shaanxi Universities(No.2019-2022).
文摘Magnesium(Mg)alloys have been extensively used in various fields,such as aerospace,automobile,electronics,and biomedical industries,due to their high specific strength and stiff ness,excellent vibration absorption,electromagnetic shielding eff ect,good machinability,and recyclability.Friction stir processing(FSP)is a severe plastic deformation technique,based on the principle of friction stir welding.In addition to introducing the basic principle and advantages of FSP,this paper reviews the studies of FSP in the modification of the cast structure,superplastic deformation behavior,preparation of finegrained Mg alloys and Mg-based surface composites,and additive manufacturing.FSP not only refines,homogenizes,and densifies the microstructure,but also eliminates the cast microstructure defects,breaks up the brittle and network-like phases,and prepares fine-grained,ultrafine-,and nano-grained Mg alloys.Indeed,FSP significantly improves the comprehensive mechanical properties of the alloys and achieves low-temperature and/or high strain rate superplasticity.Furthermore,FSP can produce particle-and fiber-reinforced Mg-based surface composites.As a promising additive manufacturing technique of light metals,FSP enables the additive manufacturing of Mg alloys.Finally,we prospect the future research direction and application with friction stir processed Mg alloys.