期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Machine-learning-assisted prediction of the mechanical properties of Cu–Al alloy 被引量:11
1
作者 Zheng-hua Deng hai-qing yin +7 位作者 Xue Jiang Cong Zhang Guo-fei Zhang Bin Xu Guo-qiang Yang Tong Zhang Mao Wu Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第3期362-373,共12页
The machine-learning approach was investigated to predict the mechanical properties of Cu–Al alloys manufactured using the powder metallurgy technique to increase the rate of fabrication and characterization of new m... The machine-learning approach was investigated to predict the mechanical properties of Cu–Al alloys manufactured using the powder metallurgy technique to increase the rate of fabrication and characterization of new materials and provide physical insights into their properties.Six algorithms were used to construct the prediction models, with chemical composition and porosity of the compacts chosen as the descriptors.The results show that the sequential minimal optimization algorithm for support vector regression with a puk kernel(SMOreg/puk) model demonstrated the best prediction ability. Specifically, its predictions exhibited the highest correlation coefficient and lowest error among the predictions of the six models. The SMOreg/puk model was subsequently applied to predict the tensile strength and hardness of Cu–Al alloys and provide guidance for composition design to achieve the expected values. With the guidance of the SMOreg/puk model, Cu–12Al–6Ni alloy with a tensile strength(390 MPa) and hardness(HB 139) that reached the expected values was developed. 展开更多
关键词 powder metallurgy tensile strength HARDNESS machine learning Cu–Al alloy SMOreg/puk
下载PDF
A novel approach to predict green density by high-velocity compaction based on the materials informatics method 被引量:2
2
作者 Kai-qi Zhang hai-qing yin +6 位作者 Xue Jiang Xiu-qin Liu Fei He Zheng-hua Deng Dil Faraz Khan Qing-jun Zheng Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第2期194-201,共8页
High-velocity compaction is an advanced compaction technique to obtain high-density compacts at a compaction velocity of ≤10 m/s. It was applied to various metallic powders and was verified to achieve a density great... High-velocity compaction is an advanced compaction technique to obtain high-density compacts at a compaction velocity of ≤10 m/s. It was applied to various metallic powders and was verified to achieve a density greater than 7.5 g/cm^3 for the Fe-based powders. The ability to rapidly and accurately predict the green density of compacts is important, especially as an alternative to costly and time-consuming materials design by trial and error. In this paper, we propose a machine-learning approach based on materials informatics to predict the green density of compacts using relevant material descriptors, including chemical composition, powder properties, and compaction energy. We investigated four models using an experimental dataset for appropriate model selection and found the multilayer perceptron model worked well, providing distinguished prediction performance, with a high correlation coefficient and low error values. Applying this model, we predicted the green density of nine materials on the basis of specific processing parameters. The predicted green density agreed very well with the experimental results for each material, with an inaccuracy less than 2%. The prediction accuracy of the developed method was thus confirmed by comparison with experimental results. 展开更多
关键词 powder METALLURGY HIGH-VELOCITY COMPACTION green density data mining MULTILAYER PERCEPTRON
下载PDF
The materials data ecosystem: Materials data science and its role in data-driven materials discovery 被引量:2
3
作者 hai-qing yin Xue Jiang +4 位作者 Guo-Quan Liu Sharon Elder Bin Xu Qing-Jun Zheng Xuan-Hui Qu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期120-125,共6页
Since its launch in 2011, the Materials Genome Initiative(MGI) has drawn the attention of researchers from academia,government, and industry worldwide. As one of the three tools of the MGI, the use of materials data... Since its launch in 2011, the Materials Genome Initiative(MGI) has drawn the attention of researchers from academia,government, and industry worldwide. As one of the three tools of the MGI, the use of materials data, for the first time, has emerged as an extremely significant approach in materials discovery. Data science has been applied in different disciplines as an interdisciplinary field to extract knowledge from data. The concept of materials data science has been utilized to demonstrate its application in materials science. To explore its potential as an active research branch in the big data era, a three-tier system has been put forward to define the infrastructure for the classification, curation and knowledge extraction of materials data. 展开更多
关键词 Materials Genome Initiative materials data science data classification life-cycle curation
下载PDF
Microstructure and properties of nano-TiN modified Ti(C,N)-based cermets fabricated by powder injection molding and die pressing
4
作者 Shan-jie Yi hai-qing yin +3 位作者 Ke Chen Dil-Faraz Khan Qing-jun Zheng Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第11期1115-1121,共7页
Powder injection molding (PIM) and die pressing were employed to fabricate nano-TiN modified Ti(C,N)- based cermets. The shrinkage behavior, microstructure, porosity, and mechanical properties of the samples with ... Powder injection molding (PIM) and die pressing were employed to fabricate nano-TiN modified Ti(C,N)- based cermets. The shrinkage behavior, microstructure, porosity, and mechanical properties of the samples with and without nano-TiN addition fabricated by PIM and die pressing were analyzed. It is demonstrated that for either PIM or die pressing, the porosities are obviously reduced, the mechanical properties are significantly improved after adding nano-TiN, and the hard particles are refined; the rim phase thickness obviously becomes thinner, and the number of dimples in fracture also increases. Compared the samples fabricated by die pressing, it is difficult for PIM to obtain dense Ti(C,N)-based cermets. Due to the too much existence of pores and isolated carbon, the mechanical properties of the sintered samples by PIM are inferior to those of the sintered ones by die pressing. 展开更多
关键词 cermets powder injection molding die pressing titanium nitride NANOPARTICLES mechanical properties
下载PDF
Study on the impact force and green properties of high-velocity compacted aluminum alloy powder
5
作者 Xian-jie Yuan hai-qing yin +2 位作者 Rafi-ud Din Dil-faraz Khan Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第12期1107-1113,共7页
High-velocity compaction (HVC) provides an effective means in the field of powder metallurgy (P/M) to reduce the porosity as well as to ameliorate the mechanical properties of products. In this study, the green de... High-velocity compaction (HVC) provides an effective means in the field of powder metallurgy (P/M) to reduce the porosity as well as to ameliorate the mechanical properties of products. In this study, the green density of an aluminum alloy is found to be 2.783 g cm 3. The ejection force for the aluminum alloy is in the range of 23 to 80 kN and the spring back is found to be less than 0.40%. The hardness of the green body is in the range of HRB 30 to 70. The bending strength of the green body is in the range of 6 to 26 MPa, which are higher than that of other aluminum alloys prepared by the traditional compaction method. 展开更多
关键词 aluminum alloys POWDERS powder metallurgy COMPACTION impact mechanical properties
下载PDF
Injection molding and debinding of micro gears fabricated by micro powder injection molding
6
作者 Xin-lei Ni hai-qing yin +2 位作者 Lin Liu Shan-jie Yi Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第1期82-87,共6页
Micro powder injection molding (μPIM) was investigated for possible mass production of micro-components at rela- tively low cost. However, scaling down to such a level produces challenges in injection molding and d... Micro powder injection molding (μPIM) was investigated for possible mass production of micro-components at rela- tively low cost. However, scaling down to such a level produces challenges in injection molding and debinding. Micro gears were fabricated by μPIM from in-house feedstock. The effect of injection speed and injection pressure on the replication of the micro gear cavity was investigated. Solvent debinding and thermal debinding processes were discussed. The results show that micro gears can be successfully fabricated under the injection pressure of 70 MPa and the 60% injection speed. Either too low or too high injection speed can cause incomplete filling of micro gears. The same is the case with too low injection pressure. Too high injection pressure can bring cracks. Solvent debinding of micro gears was performed in a mixture of petroleum ether and ethanol. Subsequently, micro gears were successfully debound by a multistep heating schedule. 展开更多
关键词 gear manufacture micro gears injection molding DEBINDING ZIRCONIA
下载PDF
Effect of Mn doping on mechanical properties and electronic structure of WCoB ternary boride by first-principles calculations
7
作者 Tong Zhang hai-qing yin +2 位作者 Cong Zhang Xuan-Hui Qu Qing-Jun Zheng 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第10期537-547,共11页
The first-principles calculations are performed to investigate the structural, mechanical property, hardness, and electronic structure of WCoB with 0, 8.33, 16.67, 25, and 33.33 at.% Mn doping content and W_2 CoB_2 wi... The first-principles calculations are performed to investigate the structural, mechanical property, hardness, and electronic structure of WCoB with 0, 8.33, 16.67, 25, and 33.33 at.% Mn doping content and W_2 CoB_2 with 0, 10, and 20 at.%Mn doping content. The cohesive energy and formation energy indicate that all the structures can retain good structural stability. According to the calculated elastic constants, Mn is responsible for the increase of ductility and Poisson's ratio and the decrease of Young's modulus, shear modulus, and bulk modulus. By using the population analysis and mechanical properties, the hardness is characterized through using the five hardness models and is found to decrease with the Mn doping content increasing. The calculated electronic structure indicates that the formation of a B–Mn covalent bond and a W–Mn metallic bond contribute to the decreasing of the mechanical properties. 展开更多
关键词 Mn doping WCoB electronic structure first-principles calculations
下载PDF
Molecular identification and interaction assay of the gene(OsUbc13) encoding a ubiquitin-conjugating enzyme in rice
8
作者 Ya WANG Meng-yun XU +3 位作者 Jian-ping LIU Mu-gui WANG hai-qing yin Ju-min TU 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2014年第7期624-637,共14页
The ubiquitin (Ub)-conjugating enzyme, Ubc13, has been known to be involved in error-free DNA damage tolerance (or post-replication repair) via catalyzing Lys63-linked polyubiquitin chains formation together with ... The ubiquitin (Ub)-conjugating enzyme, Ubc13, has been known to be involved in error-free DNA damage tolerance (or post-replication repair) via catalyzing Lys63-linked polyubiquitin chains formation together with a Ubc variant. However, its functions remain largely unknown in plant species, especial y in monocotyledons. In this study, we cloned a Ub-conjugating enzyme, OsUbc13, that shares the conserved domain of Ubc with AtUBC13B in Oryza sativa L., which encodes a protein of 153 amino acids; the deduced sequence shares high similarities with other homologs. Real-time quantitative polymerase chain reaction (PCR) indicated that OsUbc13 transcripts could be de-tected in al tissues examined, and the expression level was higher in palea, pistil, stamen, and leaf, and lower in root, stem, and lemma;the expression of OsUbc13 was induced by low temperature, methylmethane sulfate (MMS), and H2O2, but repressed by mannitol, abscisic acid (ABA), and NaCl. OsUbc13 was probably localized in the plasma and nuclear membranes. About 20 proteins, which are responsible for the positive yeast two-hybrid interaction of OsUbc13, were identified. These include the confirmed OsVDAC (correlated with apoptosis), OsMADS1 (important for development of floral organs), OsB22EL8 (related to reactive oxygen species (ROS) scavenging and DNA protection), and OsCROC-1 (required for formation of Lys63 polyubiquitylation and error-free DNA damage tolerance). The molecular characterization provides a foundation for the functional study of OsUbc13. 展开更多
关键词 Ubc13 DNA damage tolerance Oryza sativa Real-time quantitative PCR Yeast two-hybrid
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部