期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High electro-catalytic graphite felt/Mn O2composite electrodes for vanadium redox flow batteries 被引量:1
1
作者 Qiang Ma Qi Deng +8 位作者 Hang Sheng Wei Ling Hong-Rui Wang hai-wen jiao Xiong-Wei Wu Wen-Xin Zhou Xian-Xiang Zeng Ya-Xia Yin Yu-Guo Guo 《Science China Chemistry》 SCIE EI CAS CSCD 2018年第6期732-738,共7页
A mild and simple synthesis process for large-scale vanadium redox flow batteries(VRFBs)energy storage systems is desirable.A graphite felt/Mn O_2(GF-MNO)composite electrode with excellent electrocatalytic activity to... A mild and simple synthesis process for large-scale vanadium redox flow batteries(VRFBs)energy storage systems is desirable.A graphite felt/Mn O_2(GF-MNO)composite electrode with excellent electrocatalytic activity towards VO^(2+)/VO_2^+redox couples in a VRFB was synthesized by a one-step hydrothermal process.The resulting GF-MNO electrodes possess improved electrochemical kinetic reversibility of the vanadium redox reactions compared to pristine GF electrodes,and the corresponding energy efficiency and discharge capacity at 150 m A cm^(-2)are increased by 12.5%and 40%,respectively.The discharge capacity is maintained at 4.8 A h L^(-1)at the ultrahigh current density of 250 m A cm^(-2).Above all,80%of the energy efficiency of the GF-MNO composite electrodes is retained after 120 charge-discharge cycles at 150 m A cm^(-2).Furthermore,these electrodes demonstrated that more evenly distributed catalytic active sites were obtained from the Mn O_2particles under acidic conditions.The proposed synthetic route is facile,and the raw materials are low cost and environmentally friendly.Therefore,these novel GF-MNO electrodes hold great promise in large-scale vanadium redox flow battery energy storage systems. 展开更多
关键词 VRFB one-step hydrothermal graphite felt manganese dioxide composite electrode
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部