The objective of this paper is to study systematically the dynamics and control strategy of a singular biological economic model that is described by a differential-algebraic equation. It is shown that when the econom...The objective of this paper is to study systematically the dynamics and control strategy of a singular biological economic model that is described by a differential-algebraic equation. It is shown that when the economic profit passes through zero, this model exhibits the transcritical bifurcation, the Hopf bifurcation, and the limit cycle. In particular, the system undergoes the singularity induced bifurcation at the positive equilibrium, which can result in impulse. Then, state feedback controllers closer to the actual control strategies are designed to eliminate the unexpected singularity induced bifurcation and stabilize the positive equilibrium under the positive profit. Finally, numerical simulations verify the results and illustrate the effectiveness of the controllers. Also, the model with positive economic profit is shown numerically to have different dynamics.展开更多
The problem of exponential synchronization for a class of general complex dynamical networks with nonlinear coupling delays by adaptive pinning periodically intermittent control is considered in this paper. We use the...The problem of exponential synchronization for a class of general complex dynamical networks with nonlinear coupling delays by adaptive pinning periodically intermittent control is considered in this paper. We use the methods of the adaptive control, pinning control and periodically intermittent control. Based on the piecewise Lyapunov stability theory, some less conservative criteria are derived for the global exponential synchronization of the complex dynamical networks with coupling delays. And several corresponding adaptive pinning feedback synchronization controllers are designed. These controllers have strong robustness against the coupling strength and topological structure of the network. Using the delayed nonlinear system as the nodes of the networks, a numerical example of the complex dynamical networks with nonlinear coupling delays is given to demonstrate the effectiveness of the control strategy.展开更多
基金supported by National Natural Science Foundation of China (No.60974004)Science Foundation of Ministry of Housing and Urban-Rural Development (No.2011-K5-31)
文摘The objective of this paper is to study systematically the dynamics and control strategy of a singular biological economic model that is described by a differential-algebraic equation. It is shown that when the economic profit passes through zero, this model exhibits the transcritical bifurcation, the Hopf bifurcation, and the limit cycle. In particular, the system undergoes the singularity induced bifurcation at the positive equilibrium, which can result in impulse. Then, state feedback controllers closer to the actual control strategies are designed to eliminate the unexpected singularity induced bifurcation and stabilize the positive equilibrium under the positive profit. Finally, numerical simulations verify the results and illustrate the effectiveness of the controllers. Also, the model with positive economic profit is shown numerically to have different dynamics.
基金supported by National Natural Science Foundation of China(No.61273008)Science Research Project of Liaoning Provicial Education Department(No.L2012208)Science Foundation of Ministry of Housing and Urban-Rural Development(No.2013-K5-2)
文摘The problem of exponential synchronization for a class of general complex dynamical networks with nonlinear coupling delays by adaptive pinning periodically intermittent control is considered in this paper. We use the methods of the adaptive control, pinning control and periodically intermittent control. Based on the piecewise Lyapunov stability theory, some less conservative criteria are derived for the global exponential synchronization of the complex dynamical networks with coupling delays. And several corresponding adaptive pinning feedback synchronization controllers are designed. These controllers have strong robustness against the coupling strength and topological structure of the network. Using the delayed nonlinear system as the nodes of the networks, a numerical example of the complex dynamical networks with nonlinear coupling delays is given to demonstrate the effectiveness of the control strategy.