Ni–48.5at%Ti thin films were irradiated in the austenite phase by different energy-level protons at a dose rate of 1.85×1012 p/(cm2·s),and the total dose was 2.0×1016 p/cm2.The microstructures of the t...Ni–48.5at%Ti thin films were irradiated in the austenite phase by different energy-level protons at a dose rate of 1.85×1012 p/(cm2·s),and the total dose was 2.0×1016 p/cm2.The microstructures of the thin films before and after irradiation were evaluated by transmission electron microscopy(TEM)and grazing-incidence X-ray diffraction(GIXRD),which showed that the volume fraction of Ti3Ni4 phase elevated with proton energy level.The influence of proton irradiation on the transformation behavior of the TiNi thin films was investigated by differential scanning calorimetry(DSC).Compared with the unirradiation film,the reverse transformation start temperatures(As)decreased by about 3°C after 120 keV proton-irradiation.The proton irradiation also had a significant effect on the mechanical properties of the TiNi thin films.After 120 keV energy proton-irradiation,the fracture strength increased by 8.44%,and the critical stress increased by 21.1%.In addition,the nanoindenter measurement image showed that the hardness of the thin films increased with the increase of proton-irradiation energy.This may be due to the defects caused by irradiation,which strengthen the matrix.展开更多
DEAR EDITOR,The Atlantic sea nettle(Chrysaora quinquecirrha)has an important evolutionary position due to its high ecological value.However,due to limited sequencing technologies and complex jellyfish genomic sequence...DEAR EDITOR,The Atlantic sea nettle(Chrysaora quinquecirrha)has an important evolutionary position due to its high ecological value.However,due to limited sequencing technologies and complex jellyfish genomic sequences,the current C.quinquecirrha genome assembly is highly fragmented.Here,we used the most advanced high-throughput chromosome conformation capture(Hi-C)technology to obtain high-coverage sequencing data of the C.quinquecirrha genome.We then anchored these data to the previously published contig-level assembly to improve the genome.Finally,a high-continuity genome sequence of C.quinquecirrha was successfully assembled,which contained 1882 scaffolds with a N50 length of 3.83 Mb.The N50 length of the genome assembly was 5.23 times longer than the previously released one,and additional analysis revealed that it had a high degree of genomic continuity and accuracy.Acquisition of the high-continuity genome sequence of C.quinquecirrha not only provides a basis for the study of jellyfish evolution through comparative genomics but also provides an important resource for studies on jellyfish growth and development.展开更多
In the present study, it is expected to tailor the microstructural features, martensitic transformation temperatures and mechanical properties of Ti-V-Al shape memory alloys through adding Sn alloying elements, which ...In the present study, it is expected to tailor the microstructural features, martensitic transformation temperatures and mechanical properties of Ti-V-Al shape memory alloys through adding Sn alloying elements, which further expands their applications. Sn addition results in the monotonous rising of average valence electron number (e/a). In proportion, the single α″ martensite phase directly evolves into merely β parent phase in present Ti-V-Al-based shape memory alloys, as Sn content increases from 0.5 to 5.0 at.%. Meanwhile, Sn addition causes the reduction in the grain size. Combined with transmission electron microscopy (TEM) observation and d electron theory analysis, it can be speculated that Sn addition can suppress the precipitation of ω phase. With increasing Sn content, fracture strength invariably decreases from 962 to 792 MPa, whereas the yield strength firstly decreases and then increases. The lowest yield stress for the stress-induced martensitic transformation of 220 MPa can be obtained in Ti-V-Al shape memory alloy by adding 3.0 at.% Sn. By optimizing 1.0 at.% Sn, the excellent ductility with a largest elongation of 42.1% can be gained in Ti-V-Al shape memory alloy, which is larger than that of the reported Ti-V-Al-based shape memory alloys. Besides, as a result of solution strengthening and grain refinement, Ti-V-Al-based shape memory alloy with 5.0 at.% Sn possesses the highest yield strength, further contributing to the excellent strain recovery characteristics with 4% fully recoverable strain.展开更多
In order to attain high-quality Ti-Ni-Cu film,the surface morphologies,chemical compositions and mechanical properties of Ti-Ni-Cu thin films prepared by direct current(DC)magnetron sputtering at various processes wer...In order to attain high-quality Ti-Ni-Cu film,the surface morphologies,chemical compositions and mechanical properties of Ti-Ni-Cu thin films prepared by direct current(DC)magnetron sputtering at various processes were characterized by scanning electron microscopy(SEM),X-ray diffractometer(XRD)and tensile tests.The type of substrates,Ar pressure and sputtering power had significant effects on the quality and chemical composition of Ti-Ni-Cu thin film.Compared with Si and SiO_(2) slides,it was easier to obtain freestanding films by adopting glass or piezoid slide as substrates.The Ti-Ni-Cu thin film deposited at lower pressure(0.10 Pa)had a better density.The surface was featured with porous structure in the Ti-Ni-Cu thin film prepared by higher Ar pressure of 0.36 Pa.In addition,both the tensile strength and strain of annealed Ti-Ni-Cu thin film continuously increased with Ar pressure decreasing.Higher density contributed to the superior mechanical properties.The deposition rate firstly increased and then decreased with Ar pressure and sputtering power increasing.The composition of deposited Ti-Ni-Cu film can be tailored by changing sputter power.The deposited Ti-Ni-Cu thin films at different processing parameters were in amorphous state.In short,the present study offered the important theoretical basis for the preparation of Ti-Ni-Cu thin film with higher quality and performance.展开更多
基金the National Natural Science Foundation of China(Nos.51571074 and 51731005)the Industrial Transformation and Upgrading of Strong Base Project of China(No.TC150B5C0/03).
文摘Ni–48.5at%Ti thin films were irradiated in the austenite phase by different energy-level protons at a dose rate of 1.85×1012 p/(cm2·s),and the total dose was 2.0×1016 p/cm2.The microstructures of the thin films before and after irradiation were evaluated by transmission electron microscopy(TEM)and grazing-incidence X-ray diffraction(GIXRD),which showed that the volume fraction of Ti3Ni4 phase elevated with proton energy level.The influence of proton irradiation on the transformation behavior of the TiNi thin films was investigated by differential scanning calorimetry(DSC).Compared with the unirradiation film,the reverse transformation start temperatures(As)decreased by about 3°C after 120 keV proton-irradiation.The proton irradiation also had a significant effect on the mechanical properties of the TiNi thin films.After 120 keV energy proton-irradiation,the fracture strength increased by 8.44%,and the critical stress increased by 21.1%.In addition,the nanoindenter measurement image showed that the hardness of the thin films increased with the increase of proton-irradiation energy.This may be due to the defects caused by irradiation,which strengthen the matrix.
基金This work was supported by the Province of China(202011840014)Shaanxi College Students’Innovation and Entrepreneurship Training Program(S202011840014)+5 种基金Xi’an Medical University College Students’Innovation and Entrepreneurship Training Program(121520014)National Natural Science Foundation of China(31760671Detail)Joint Special Project of Agricultural Basic Research in Yunnan Province(2018FG001-041)Yunnan Provincial Department of Education Research Fund(2020J0251)Scientific Research Fund of Shaanxi Provincial Education Department(20JS143)Natural Science Basic Research Plan in Shaanxi Province of China(2020JQ-876)。
文摘DEAR EDITOR,The Atlantic sea nettle(Chrysaora quinquecirrha)has an important evolutionary position due to its high ecological value.However,due to limited sequencing technologies and complex jellyfish genomic sequences,the current C.quinquecirrha genome assembly is highly fragmented.Here,we used the most advanced high-throughput chromosome conformation capture(Hi-C)technology to obtain high-coverage sequencing data of the C.quinquecirrha genome.We then anchored these data to the previously published contig-level assembly to improve the genome.Finally,a high-continuity genome sequence of C.quinquecirrha was successfully assembled,which contained 1882 scaffolds with a N50 length of 3.83 Mb.The N50 length of the genome assembly was 5.23 times longer than the previously released one,and additional analysis revealed that it had a high degree of genomic continuity and accuracy.Acquisition of the high-continuity genome sequence of C.quinquecirrha not only provides a basis for the study of jellyfish evolution through comparative genomics but also provides an important resource for studies on jellyfish growth and development.
基金financial support from the National Natural Science Foundation of China(Nos.52101231,52101232 and 51871079)the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing(Yantai)(No.AMGM2021F09)+1 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2021QE044)the Gansu Province Science and Technology Foundation for Youths(No.21JR7RA088).
文摘In the present study, it is expected to tailor the microstructural features, martensitic transformation temperatures and mechanical properties of Ti-V-Al shape memory alloys through adding Sn alloying elements, which further expands their applications. Sn addition results in the monotonous rising of average valence electron number (e/a). In proportion, the single α″ martensite phase directly evolves into merely β parent phase in present Ti-V-Al-based shape memory alloys, as Sn content increases from 0.5 to 5.0 at.%. Meanwhile, Sn addition causes the reduction in the grain size. Combined with transmission electron microscopy (TEM) observation and d electron theory analysis, it can be speculated that Sn addition can suppress the precipitation of ω phase. With increasing Sn content, fracture strength invariably decreases from 962 to 792 MPa, whereas the yield strength firstly decreases and then increases. The lowest yield stress for the stress-induced martensitic transformation of 220 MPa can be obtained in Ti-V-Al shape memory alloy by adding 3.0 at.% Sn. By optimizing 1.0 at.% Sn, the excellent ductility with a largest elongation of 42.1% can be gained in Ti-V-Al shape memory alloy, which is larger than that of the reported Ti-V-Al-based shape memory alloys. Besides, as a result of solution strengthening and grain refinement, Ti-V-Al-based shape memory alloy with 5.0 at.% Sn possesses the highest yield strength, further contributing to the excellent strain recovery characteristics with 4% fully recoverable strain.
基金financially supported by the National Natural Science Foundation of China(Nos.51801023,51871080 and 51571073)the Industrial Transformation&Upgrading of Strong Base Project of China(No.TC150B5C0/03)。
文摘In order to attain high-quality Ti-Ni-Cu film,the surface morphologies,chemical compositions and mechanical properties of Ti-Ni-Cu thin films prepared by direct current(DC)magnetron sputtering at various processes were characterized by scanning electron microscopy(SEM),X-ray diffractometer(XRD)and tensile tests.The type of substrates,Ar pressure and sputtering power had significant effects on the quality and chemical composition of Ti-Ni-Cu thin film.Compared with Si and SiO_(2) slides,it was easier to obtain freestanding films by adopting glass or piezoid slide as substrates.The Ti-Ni-Cu thin film deposited at lower pressure(0.10 Pa)had a better density.The surface was featured with porous structure in the Ti-Ni-Cu thin film prepared by higher Ar pressure of 0.36 Pa.In addition,both the tensile strength and strain of annealed Ti-Ni-Cu thin film continuously increased with Ar pressure decreasing.Higher density contributed to the superior mechanical properties.The deposition rate firstly increased and then decreased with Ar pressure and sputtering power increasing.The composition of deposited Ti-Ni-Cu film can be tailored by changing sputter power.The deposited Ti-Ni-Cu thin films at different processing parameters were in amorphous state.In short,the present study offered the important theoretical basis for the preparation of Ti-Ni-Cu thin film with higher quality and performance.