The change of iron composition as well as the removal of copper from iron was investigated in the reduction process, and a new way to deal with copper slag was proposed. The iron in copper slag exists mainly in the fo...The change of iron composition as well as the removal of copper from iron was investigated in the reduction process, and a new way to deal with copper slag was proposed. The iron in copper slag exists mainly in the form of fayalite, and the copper sulfide content accounts for just about 50%. Therefore, the magnetic separation as well as grinding floatation method is not suitable, and a pyrogenic treatment on copper slag is necessary. The carhurization and desulfurization process is restricted to a degree within the carbon composite pellets, and copper matte phase pre- cipitates from copper slag in the reduction process, which is immiscible with molten iron and slag. The copper con- tent decreases to 0.4% as the carbon content in molten iron reaches 3.84%, and the removal ratio of copper from molten iron approaches to 80%. The reduction and sulfurization process can be eompleted in one step, and the copper is separated from iron based on the ternary system of iron-matte-slag.展开更多
基金Item Sponsored by National Natural Science Foundation of China(51404075)
文摘The change of iron composition as well as the removal of copper from iron was investigated in the reduction process, and a new way to deal with copper slag was proposed. The iron in copper slag exists mainly in the form of fayalite, and the copper sulfide content accounts for just about 50%. Therefore, the magnetic separation as well as grinding floatation method is not suitable, and a pyrogenic treatment on copper slag is necessary. The carhurization and desulfurization process is restricted to a degree within the carbon composite pellets, and copper matte phase pre- cipitates from copper slag in the reduction process, which is immiscible with molten iron and slag. The copper con- tent decreases to 0.4% as the carbon content in molten iron reaches 3.84%, and the removal ratio of copper from molten iron approaches to 80%. The reduction and sulfurization process can be eompleted in one step, and the copper is separated from iron based on the ternary system of iron-matte-slag.