Mixed bacteria were enriched from heavy metals mine soil for cadmium(Cd(Ⅱ))-containing wastewater treatment. Batch adsorption experiment results showed that the optimal pH, temperature, initial Cd(Ⅱ) concentration, ...Mixed bacteria were enriched from heavy metals mine soil for cadmium(Cd(Ⅱ))-containing wastewater treatment. Batch adsorption experiment results showed that the optimal pH, temperature, initial Cd(Ⅱ) concentration, and biomass dosage were 6.0, 30 ℃, 20 mg/L, and 1 g/L, respectively. Living biomass exhibited better Cd(Ⅱ) removal efficiency(91.97%) than autoclaved biomass(79.54%) under optimal conditions. The isotherms and kinetics of living biomass conformed to the Langmuir isotherm model and pseudo-first-order kinetic model, respectively. FTIR results implied that amine groups, hydroxyl groups and phosphoric acid play an important role in the Cd(Ⅱ) adsorption process, while XRD results showed that crystalline Cd(OH)and CdO were obtained. After Cd(Ⅱ)-containing wastewater treatment exposure, the dominant bacteria genera included Comamonas(39.94%), unclassified_f__Enterobacteriaceae(34.96%), Ochrobactrum(14.07%), Alcaligenes(4.84%), Bordetella(2.07%), Serratia(1.04%), and Bacillus(1.01%). Function prediction showed that the abundance of metabolic genes changed significantly. This study proposes the potential application of mixed bacteria for Cd(Ⅱ)-containing wastewater treatment.展开更多
基金supported by the National Natural Science Foundation of China (No. 52170164)the Open Project of Key Laboratory of Environmental Biotechnology,CAS (No. kf2018001)the Scientific Research Foundation for Returned Scholars at the University of South China (No. 2018XQD25)
文摘Mixed bacteria were enriched from heavy metals mine soil for cadmium(Cd(Ⅱ))-containing wastewater treatment. Batch adsorption experiment results showed that the optimal pH, temperature, initial Cd(Ⅱ) concentration, and biomass dosage were 6.0, 30 ℃, 20 mg/L, and 1 g/L, respectively. Living biomass exhibited better Cd(Ⅱ) removal efficiency(91.97%) than autoclaved biomass(79.54%) under optimal conditions. The isotherms and kinetics of living biomass conformed to the Langmuir isotherm model and pseudo-first-order kinetic model, respectively. FTIR results implied that amine groups, hydroxyl groups and phosphoric acid play an important role in the Cd(Ⅱ) adsorption process, while XRD results showed that crystalline Cd(OH)and CdO were obtained. After Cd(Ⅱ)-containing wastewater treatment exposure, the dominant bacteria genera included Comamonas(39.94%), unclassified_f__Enterobacteriaceae(34.96%), Ochrobactrum(14.07%), Alcaligenes(4.84%), Bordetella(2.07%), Serratia(1.04%), and Bacillus(1.01%). Function prediction showed that the abundance of metabolic genes changed significantly. This study proposes the potential application of mixed bacteria for Cd(Ⅱ)-containing wastewater treatment.