期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Improvement of deformation capacity of gas-atomized hypereutectic Al-Si alloy powder by annealing treatment 被引量:2
1
作者 Zhi-yong CAI Chun ZHANG +4 位作者 Ri-chu WANG Chao-qun PENG Xiang WU hai-pu li Ming YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第8期1475-1483,共9页
Gas-atomized pure metal or alloy powders are widely used as raw material in the preparation of high performance materials by powder metallurgy route(compaction and sintering). However, cold compactibility of gas-ato... Gas-atomized pure metal or alloy powders are widely used as raw material in the preparation of high performance materials by powder metallurgy route(compaction and sintering). However, cold compactibility of gas-atomized Al-Si alloy powder is inhibited due to the high strength as a result of the refined Si phases and the supersaturated Al matrix. The effect of annealing on improving the compactibility of Al-Si alloy powder was studied. The densification was investigated by the HECKEL compaction equation in terms of deformation capacity. Moreover, the microstructures and bending fracture surfaces of the green compacts were examined to clarify the densification behavior. The results show that a maximum relative density of 96.1% is obtained when the powder is annealed at 400 °C. The deformation capacity is significantly improved by annealing treatment due to the softening of Al matrix, precipitation of supersaturated Si phases, dissolution of needle-like eutectic phase, and spheroidization of Si phases. 展开更多
关键词 powder compaction gas atomization Al-Si alloy annealing MICROSTRUCTURE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部