Industrial thin-film composite(TFC)membranes achieve superior gas separation properties from high-performance selective layer materials,while the success of membrane technology relies on high-performance gutter layers...Industrial thin-film composite(TFC)membranes achieve superior gas separation properties from high-performance selective layer materials,while the success of membrane technology relies on high-performance gutter layers to achieve production scalability and low-cost manufacturing.However,the current literature predominantly focuses on the design of polymer architectures to obtain high permeability and selectivity,while the art of fabricating gutter layers is usually safeguarded by industrial manufacturers and appears lackluster to academic researchers.This is the first report aiming to provide a comprehensive and critical review of state-of-the-art gutter layer materials and their design and modification to enable TFC membranes with superior separation performance.We first elucidate the importance of the gutter layer on membrane performance through modeling and experimental results.Then various gutter layer materials used to obtain high-performance composite membranes are critically reviewed,and the strategies to improve their compatibility with the selective layer are highlighted,such as oxygen plasma treatment,polydopamine deposition,and surface grafting.Finally,we present the opportunities of the gutter layer design for practical applications.展开更多
The application of the eigenstate thermalization hypothesis to non-Hermitian quantum systems has become one of the most important topics in dissipative quantum chaos, recently giving rise to intense debates. The proce...The application of the eigenstate thermalization hypothesis to non-Hermitian quantum systems has become one of the most important topics in dissipative quantum chaos, recently giving rise to intense debates. The process of thermalization is intricate, involving many time-evolution trajectories in the reduced Hilbert space of the system. By considering two different expansion forms of the density matrices adopted in the biorthogonal and right-state time evolutions, we derive two versions of the Gorini–Kossakowski–Sudarshan–Lindblad(GKSL)master equations describing the non-Hermitian systems coupled to a bosonic heat bath in thermal equilibrium. By solving the equations, we identify a sufficient condition for thermalization under both time evolutions, resulting in Boltzmann biorthogonal and right-eigenstate statistics, respectively. This finding implies that the recently proposed biorthogonal random matrix theory needs an appropriate revision. Moreover, we exemplify the precise dynamics of thermalization and thermodynamic properties with test models.展开更多
Many issues concerning the origin of high-temperature superconductivity(HTS)are still under debate.For example,how the magnetic order varies with doping and its relationship with the superconducting temperature(Tc);an...Many issues concerning the origin of high-temperature superconductivity(HTS)are still under debate.For example,how the magnetic order varies with doping and its relationship with the superconducting temperature(Tc);and why Tcalways peaks near the quantum critical point.In this paper,taking hole-doped La_(2)CuO_(4)as a classical example,we employ the first-principles band structure and total energy calculations with Monte Carlo simulations to explore how the symmetry-breaking magnetic ground state evolves with hole doping and the origin of a dome-shaped superconductivity region in the phase diagram.We demonstrate that the local antiferromagnetic order and doping play key roles in determining the electron-phonon coupling,thus Tc.Initially,the La_(2)CuO_(4)possesses a checkerboard local antiferromagnetic ground state.As the hole doping increases,Tcincreases with the enhanced electron-phonon coupling strength.But as the doping increases further,the strength of the antiferromagnetic interaction weakens and spin fluctuation increases.At the critical doping level,a magnetic phase transition occurs that reduces the local antiferromagnetism-assisted electron-phonon coupling,thus diminishing the Tc.The superconductivity disappears in the heavily overdoped region when the ferromagnetic order dominates.These observations could account for why cuprates have a dome-shaped superconductivity region in the phase diagram.Our study,thus,contributes to a fundamental understanding of the correlation between doping,local magnetic order,and superconductivity of HTS.展开更多
We theoretically studied the thermoelectric transport properties of a strongly correlated quantum dot system in the presence of the Kondo effect based on accurate numerical evaluations using the hierarchical equations...We theoretically studied the thermoelectric transport properties of a strongly correlated quantum dot system in the presence of the Kondo effect based on accurate numerical evaluations using the hierarchical equations of motion approach.The thermocurrent versus gate voltage shows a distinct sawtooth line-shape at high temperatures.In particular,the current changes from positive(hole charge)to negative(particle charge)in the electron number N=1 region due to the Coulomb blockade effect.However,at low temperatures,where the Kondo effect occurs,the thermocurrent’s charge polarity reverses,along with a significantly enhanced magnitude.As anticipated,the current sign can be analyzed by the occupation difference between particle and hole.Moreover,the characteristic turnover temperature can be further defined at which the influences of the Coulomb blockade and Kondo resonance are in an effective balance.Remarkably,the identified characteristic turnover temperature,as a function of the Coulomb interaction and dot-lead coupling,possessed a much higher value than the Kondo temperature.When a magnetic field is applied,a spin-polarized thermocurrent can be obtained,which could be tested in future experiments.展开更多
基金support from the U.S.Department of Energy National Energy Technology Laboratory(DE-FE0031736)the New York State Foundation for Science,Technology and Innovation(NYSTAR).
文摘Industrial thin-film composite(TFC)membranes achieve superior gas separation properties from high-performance selective layer materials,while the success of membrane technology relies on high-performance gutter layers to achieve production scalability and low-cost manufacturing.However,the current literature predominantly focuses on the design of polymer architectures to obtain high permeability and selectivity,while the art of fabricating gutter layers is usually safeguarded by industrial manufacturers and appears lackluster to academic researchers.This is the first report aiming to provide a comprehensive and critical review of state-of-the-art gutter layer materials and their design and modification to enable TFC membranes with superior separation performance.We first elucidate the importance of the gutter layer on membrane performance through modeling and experimental results.Then various gutter layer materials used to obtain high-performance composite membranes are critically reviewed,and the strategies to improve their compatibility with the selective layer are highlighted,such as oxygen plasma treatment,polydopamine deposition,and surface grafting.Finally,we present the opportunities of the gutter layer design for practical applications.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFA1402700)the National Natural Science Foundation of China (Grant Nos.12174020,12088101,11974244,and U2230402)。
文摘The application of the eigenstate thermalization hypothesis to non-Hermitian quantum systems has become one of the most important topics in dissipative quantum chaos, recently giving rise to intense debates. The process of thermalization is intricate, involving many time-evolution trajectories in the reduced Hilbert space of the system. By considering two different expansion forms of the density matrices adopted in the biorthogonal and right-state time evolutions, we derive two versions of the Gorini–Kossakowski–Sudarshan–Lindblad(GKSL)master equations describing the non-Hermitian systems coupled to a bosonic heat bath in thermal equilibrium. By solving the equations, we identify a sufficient condition for thermalization under both time evolutions, resulting in Boltzmann biorthogonal and right-eigenstate statistics, respectively. This finding implies that the recently proposed biorthogonal random matrix theory needs an appropriate revision. Moreover, we exemplify the precise dynamics of thermalization and thermodynamic properties with test models.
基金supported by the National Natural Science Foundation of China(Grant Nos.61922077,11874347,11991060,12088101,61927901U2230402)+3 种基金the National Key Research and Development Program of China(Grant Nos.2018YFB2200100,and 2020YFB1506400)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0460000)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-026)supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.Y2021042)。
文摘Many issues concerning the origin of high-temperature superconductivity(HTS)are still under debate.For example,how the magnetic order varies with doping and its relationship with the superconducting temperature(Tc);and why Tcalways peaks near the quantum critical point.In this paper,taking hole-doped La_(2)CuO_(4)as a classical example,we employ the first-principles band structure and total energy calculations with Monte Carlo simulations to explore how the symmetry-breaking magnetic ground state evolves with hole doping and the origin of a dome-shaped superconductivity region in the phase diagram.We demonstrate that the local antiferromagnetic order and doping play key roles in determining the electron-phonon coupling,thus Tc.Initially,the La_(2)CuO_(4)possesses a checkerboard local antiferromagnetic ground state.As the hole doping increases,Tcincreases with the enhanced electron-phonon coupling strength.But as the doping increases further,the strength of the antiferromagnetic interaction weakens and spin fluctuation increases.At the critical doping level,a magnetic phase transition occurs that reduces the local antiferromagnetism-assisted electron-phonon coupling,thus diminishing the Tc.The superconductivity disappears in the heavily overdoped region when the ferromagnetic order dominates.These observations could account for why cuprates have a dome-shaped superconductivity region in the phase diagram.Our study,thus,contributes to a fundamental understanding of the correlation between doping,local magnetic order,and superconductivity of HTS.
基金the National Natural Science Foundation of China(Grant Nos.11804245,11747098,11504017,11774418,11674139,11834005,21633006,and U1930402)the China Postdoctoral Science Foundation(Grant No.2019M660431)the Program for the Innovative Talents of Taiyuan Institute of Technology。
文摘We theoretically studied the thermoelectric transport properties of a strongly correlated quantum dot system in the presence of the Kondo effect based on accurate numerical evaluations using the hierarchical equations of motion approach.The thermocurrent versus gate voltage shows a distinct sawtooth line-shape at high temperatures.In particular,the current changes from positive(hole charge)to negative(particle charge)in the electron number N=1 region due to the Coulomb blockade effect.However,at low temperatures,where the Kondo effect occurs,the thermocurrent’s charge polarity reverses,along with a significantly enhanced magnitude.As anticipated,the current sign can be analyzed by the occupation difference between particle and hole.Moreover,the characteristic turnover temperature can be further defined at which the influences of the Coulomb blockade and Kondo resonance are in an effective balance.Remarkably,the identified characteristic turnover temperature,as a function of the Coulomb interaction and dot-lead coupling,possessed a much higher value than the Kondo temperature.When a magnetic field is applied,a spin-polarized thermocurrent can be obtained,which could be tested in future experiments.