Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency ...Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency lags much behind to their single junction counterparts due to the deficient interconnection layer(ICL) and defective subcells. To improve TSCs performance, we developed three kinds of ICL structures based on 1.34 and 0.96 e V PbS QDs subcells. The control, 1,2-ethanedithiol capped PbS QDs(PbS-EDT)/Au/tin dioxide(SnO_(2))/zinc oxide(Zn O), utilized SnO_(2) layer to obtain high surface compactness.However, its energy level mismatch causes incomplete recombination. Bypassing it, the second ICL(PbS-EDT/Au/Zn O) removed SnO_(2) and boosted the power conversion efficiency(PCE) from 5.75% to 8.69%. In the third ICL(PbS-EDT/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)/Au/Zn O), a thin layer of PTAA can effectively fill fissures on the surface of PbS-EDT and also protect the front cells from solvent penetration. This TSC obtained a PCE of 9.49% with an open circuit voltage of 0.91 V, a short circuit current density of 15.47 m A/cm~2, and a fill factor of 67.7%. To the best of our knowledge, this was the highest PCE achieved by all PbS QD TSCs reported to date. These TSCs maintained stable performance for a long working time under ambient conditions.展开更多
Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certi...Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certified photovoltaic efficiencies have reached 22.1%. Compared to bulk halide perovskites, low-dimensional ones exhibited novel physical properties. The photoluminescence quantum yields of perovskite quantum dots are close to 100%. The external quantum efficiencies and current efficiencies of perovskite quantum dot light-emitting diodes have reached 8% and 43 cd A^(-1),respectively, and their nanowire lasers show ultralow-threshold room-temperature lasing with emission tunability and ease of synthesis. Perovskite nanowire photodetectors reached a responsivity of 10 A W^(-1)and a specific normalized detectivity of the order of 10^(12 )Jones. Different from most reported reviews focusing on photovoltaic applications, we summarize the rapid progress in the study of low-dimensional perovskite materials, as well as their promising applications in optoelectronic devices. In particular, we review the wide tunability of fabrication methods and the state-of-the-art research outputs of low-dimensional perovskite optoelectronic devices. Finally, the anticipated challenges and potential for this exciting research are proposed.展开更多
The recent emerging progress of quantum dot ink(QD-ink)has overcome the complexity of multiple-step colloidal QD(CQD)film preparation and pronouncedly promoted the device performance.However,the detrimental hydroxyl(O...The recent emerging progress of quantum dot ink(QD-ink)has overcome the complexity of multiple-step colloidal QD(CQD)film preparation and pronouncedly promoted the device performance.However,the detrimental hydroxyl(OH)ligands induced from synthesis procedure have not been completely removed.Here,a halide ligand additive strategy was devised to optimize QD-ink process.It simultaneously reduced sub-bandgap states and converted them into iodide-passivated surface,which increase carrier mobility of the QDs films and achieve thicker absorber with improved performances.The corresponding power conversion efficiency of this optimized device reached 10.78%.(The control device was 9.56%.)Therefore,this stratege can support as a candidate strategy to solve the QD original limitation caused by hydroxyl ligands,which is also compatible with other CQD-based optoelectronic devices.展开更多
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an effi...The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn^(2+)remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.展开更多
Comparing with hot researches in absorber layer,window layer has attracted less attention in PbS quantum dot solar cells(QD SCs). Actually, the window layer plays a key role in exciton separation, charge drifting, and...Comparing with hot researches in absorber layer,window layer has attracted less attention in PbS quantum dot solar cells(QD SCs). Actually, the window layer plays a key role in exciton separation, charge drifting, and so on.Herein, ZnO window layer was systematically investigated for its roles in QD SCs performance. The physical mechanism of improved performance was also explored. It was found that the optimized ZnO films with appropriate thickness and doping concentration can balance the optical and electrical properties, and its energy band align well with the absorber layer for efficient charge extraction. Further characterizations demonstrated that the window layer optimization can help to reduce the surface defects, improve the heterojunction quality, as well as extend the depletion width. Compared with the control devices, the optimized devices have obtained an efficiency of 6.7% with an enhanced V_(oc) of 18%, J_(sc) of 21%, FF of 10%, and power conversion efficiency of 58%. The present work suggests a useful strategy to improve the device performance by optimizing the window layer besides the absorber layer.展开更多
Infrared solar cells are more efective than normal bandgap solar cells at reducing the spectral loss in the near-infrared region,thus also at broadening the absorption spectra and improving power conversion efciency.P...Infrared solar cells are more efective than normal bandgap solar cells at reducing the spectral loss in the near-infrared region,thus also at broadening the absorption spectra and improving power conversion efciency.PbS colloidal quantum dots(QDs)with tunable bandgap are ideal infrared photovoltaic materials.However,QD solar cell production sufers from small-areabased spin-coating fabrication methods and unstable QD ink.Herein,the QD ink stability mechanism was fully investigated according to Lewis acid–base theory and colloid stability theory.We further studied a mixed solvent system using dimethylformamide and butylamine,compatible with the scalable manufacture of method-blade coating.Based on the ink system,100 cm2 of uniform and dense near-infrared PbS QDs(~0.96 eV)flm was successfully prepared by blade coating.The average efciencies of above absorber-based devices reached 11.14%under AM1.5G illumination,and the 800 nm-fltered efciency achieved 4.28%.Both were the top values among blade coating method based devices.The newly developed ink showed excellent stability,and the device performance based on the ink stored for 7 h was similar to that of fresh ink.The matched solvent system for stable PbS QD ink represents a crucial step toward large area blade coating photoelectric devices.展开更多
Purpose In the JUNO,the LS serves as the medium for detecting neutrinos.When purifying the LS using HPN,it is essential to ensure low background levels of radioactive krypton and argon in the HPN Methods Using the low...Purpose In the JUNO,the LS serves as the medium for detecting neutrinos.When purifying the LS using HPN,it is essential to ensure low background levels of radioactive krypton and argon in the HPN Methods Using the low-temperature physical adsorption properties of activated carbon to adsorb and separate radioactive gases such as radon,krypton,and argon from nitrogen in a liquid nitrogen environment.Results Our results indicated that the Kr concentration in the HPN purified by HP activated carbon is 6.84μBq/m,and the Ar concentration is 3.6μBq/m for overground HPN,while the Kr concentration is 31.4μBq/m for underground HPN.The^(85)Kr concentration in the nitrogen purified by coconut shell activated carbon is 0.46μBq/m.Conclusions After adsorption with activated carbon,the content of^(39)Kr and Ar in HPN is lower than the 50μBq/m required by JUNO.This work validates that the^(85)Kr and^(39)Ar concentrations in HPN is fit the JUNO requirement.展开更多
Photodetectors convert photons into current or voltage outputs and are thus widely used for spectroscopy,imaging and sensing.Traditional photodetectors generally show a consistent-polarity response to incident photons...Photodetectors convert photons into current or voltage outputs and are thus widely used for spectroscopy,imaging and sensing.Traditional photodetectors generally show a consistent-polarity response to incident photons within their broadband responsive spectrum.Here we introduced a new type of photodetector employing SnS_(2) nanosheets sensitized with PbS colloidal quantum dots(CQDs)that are not only sensitive(~105AW−1)and broadband(300–1000 nm)but also spectrally distinctive,that is,show distinctive(positive or negative)photoresponse toward incident photons of different wavelengths.A careful mechanism study revealed illumination-modulated Schottky contacts between SnS_(2) nanosheets and Au electrodes,altering the photoresponse polarity toward incident photons of different wavelengths.Finally,we applied our SnS_(2) nanosheet/PbS CQDs hybrid photodetector to differentiate the color temperature of emission from a series of white light-emitting diodes(LEDs),showcasing the unique application of our novel photodetectors.展开更多
Direct X-ray detectors are considered as competitive next-generation X-ray detectors because of their high spatial resolution,high sensitivity,and simple device configuration.However,their potential is largely limited...Direct X-ray detectors are considered as competitive next-generation X-ray detectors because of their high spatial resolution,high sensitivity,and simple device configuration.However,their potential is largely limited by the imperfections of traditional materials,such as the low crystallization temperature of α-Se and the low atomic numbers of α-Si and α-Se.Here,we report the Sb_(2)Se_(3) X-ray thin-film detector with a p-n junction structure,which exhibited a sensitivity of 106.3 μC/(Gyair·cm^(2))and response time of<2.5 ms.This decent performance and the various advantages of Sb_(2)Se_(3),such as the average atomic number of 40.8 and μτ product(μ is the mobility,and τ is the carrier lifetime)of 1.29×1O^(-5) cm^(2)/V,indicate its potential for application in X-ray detection.展开更多
Copper tin sulfide (Cu2SnS3) was a potential earth abundant absorber material for photovoltaic device application. In this contribution, triclinic Cu2SnS3 film with phase pure composition and large grain size was fa...Copper tin sulfide (Cu2SnS3) was a potential earth abundant absorber material for photovoltaic device application. In this contribution, triclinic Cu2SnS3 film with phase pure composition and large grain size was fabricated from a hydrazine solution process using Cu, Sn and S as the precursors. Absorption measurement revealed this Cu2SnS3 film had a direct optical band gap of 0.88 eV, and Hall effect measurement indicated the film was p-type with hole mobility of 0.86 cmE/Vs. Finally Mo/Cu2SnS3/ CdS/ZnO/AZO/Au was produced and the best device efficiency achieved was 0.78%. Also, this device showed improved device performance during ambient storage. This study laid some foundation for the further improve- ment of Cu2SnS3 solar cell.展开更多
基金National Natural Science Foundation of China (Grant No. 62374065)Interdisciplinary Research promotion of HUST (No. 2023JCYJ040)+2 种基金Innovation Project of Optics Valley Laboratory (No. OVL2021BG008)Program of Science Technology of Wenzhou City (No. G20210011)financial support from the Innovation and Technology Commission (Grant no. MHP/104/21)。
文摘Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency lags much behind to their single junction counterparts due to the deficient interconnection layer(ICL) and defective subcells. To improve TSCs performance, we developed three kinds of ICL structures based on 1.34 and 0.96 e V PbS QDs subcells. The control, 1,2-ethanedithiol capped PbS QDs(PbS-EDT)/Au/tin dioxide(SnO_(2))/zinc oxide(Zn O), utilized SnO_(2) layer to obtain high surface compactness.However, its energy level mismatch causes incomplete recombination. Bypassing it, the second ICL(PbS-EDT/Au/Zn O) removed SnO_(2) and boosted the power conversion efficiency(PCE) from 5.75% to 8.69%. In the third ICL(PbS-EDT/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)/Au/Zn O), a thin layer of PTAA can effectively fill fissures on the surface of PbS-EDT and also protect the front cells from solvent penetration. This TSC obtained a PCE of 9.49% with an open circuit voltage of 0.91 V, a short circuit current density of 15.47 m A/cm~2, and a fill factor of 67.7%. To the best of our knowledge, this was the highest PCE achieved by all PbS QD TSCs reported to date. These TSCs maintained stable performance for a long working time under ambient conditions.
基金supported by the Doctoral Program of Higher Education(20130142120075)the Fundamental Research Funds for the Central Universities(HUST:2016YXMS032)National Key Research and Development Program of China(Grant No.2016YFB0700702)
文摘Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certified photovoltaic efficiencies have reached 22.1%. Compared to bulk halide perovskites, low-dimensional ones exhibited novel physical properties. The photoluminescence quantum yields of perovskite quantum dots are close to 100%. The external quantum efficiencies and current efficiencies of perovskite quantum dot light-emitting diodes have reached 8% and 43 cd A^(-1),respectively, and their nanowire lasers show ultralow-threshold room-temperature lasing with emission tunability and ease of synthesis. Perovskite nanowire photodetectors reached a responsivity of 10 A W^(-1)and a specific normalized detectivity of the order of 10^(12 )Jones. Different from most reported reviews focusing on photovoltaic applications, we summarize the rapid progress in the study of low-dimensional perovskite materials, as well as their promising applications in optoelectronic devices. In particular, we review the wide tunability of fabrication methods and the state-of-the-art research outputs of low-dimensional perovskite optoelectronic devices. Finally, the anticipated challenges and potential for this exciting research are proposed.
基金financially supported by National Natural Science Foundation of China (61874165,51761145048,and 21833009)the Foundation of Shenzhen Science and Technology Innovation Committee (JCYJ20170413113645633)+2 种基金Major State Basic Research Development Program of China (2016YFB0700702)the Guangdong-Hong Kong joint innovation project (2016A050503012)Guangdong Natural Science Funds for Distinguished Young Scholars (2015A030306044)
文摘The recent emerging progress of quantum dot ink(QD-ink)has overcome the complexity of multiple-step colloidal QD(CQD)film preparation and pronouncedly promoted the device performance.However,the detrimental hydroxyl(OH)ligands induced from synthesis procedure have not been completely removed.Here,a halide ligand additive strategy was devised to optimize QD-ink process.It simultaneously reduced sub-bandgap states and converted them into iodide-passivated surface,which increase carrier mobility of the QDs films and achieve thicker absorber with improved performances.The corresponding power conversion efficiency of this optimized device reached 10.78%.(The control device was 9.56%.)Therefore,this stratege can support as a candidate strategy to solve the QD original limitation caused by hydroxyl ligands,which is also compatible with other CQD-based optoelectronic devices.
基金supported by the National Natural Science Foundation of China(NSFC)(No.61775091,21671160,51761145048,21833009)Natural Science Foundation of Shenzhen Innovation Committee(Nos.JCYJ20180504165851864)the Shenzhen Key Laboratory Project(No.ZDSYS201602261933302)。
文摘The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn^(2+)remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.
基金financially supported by the National Natural Science Foundation of China(61306137,51602114)the Research Fund for the Doctoral Program of Higher Education(20130142120075)+2 种基金the Fundamental Research Funds for the Central Universities(HUST:2016YXMS032)the Guangdong-Hong Kong joint innovation project(Grant No.2016A050503012)the Guangdong Natural Science Funds for Distinguished Young Scholars(Grant No.2015A030306044)
文摘Comparing with hot researches in absorber layer,window layer has attracted less attention in PbS quantum dot solar cells(QD SCs). Actually, the window layer plays a key role in exciton separation, charge drifting, and so on.Herein, ZnO window layer was systematically investigated for its roles in QD SCs performance. The physical mechanism of improved performance was also explored. It was found that the optimized ZnO films with appropriate thickness and doping concentration can balance the optical and electrical properties, and its energy band align well with the absorber layer for efficient charge extraction. Further characterizations demonstrated that the window layer optimization can help to reduce the surface defects, improve the heterojunction quality, as well as extend the depletion width. Compared with the control devices, the optimized devices have obtained an efficiency of 6.7% with an enhanced V_(oc) of 18%, J_(sc) of 21%, FF of 10%, and power conversion efficiency of 58%. The present work suggests a useful strategy to improve the device performance by optimizing the window layer besides the absorber layer.
基金HS acknowledges the financial support from the National Natural Science Foundation of China(Grant No.62374065)the Interdisciplinary Research promotion of HUST(No.2023JCYJ040)+4 种基金the Innovation Project of Optics Valley Laboratory(No.OVL2021BG008)the Program of Science Technology of Wenzhou City(No.G20210011)HH acknowledges the fnancial support from the Innovation and Technology Commission(No.MHP/104/21)the Shenzhen Science Technology and Innovation Commission(No.JCYJ20210324125612035)the City University of Hong Kong(Nos.9360140,7005720,9667229,9680331,7005580,and 9678291)。
文摘Infrared solar cells are more efective than normal bandgap solar cells at reducing the spectral loss in the near-infrared region,thus also at broadening the absorption spectra and improving power conversion efciency.PbS colloidal quantum dots(QDs)with tunable bandgap are ideal infrared photovoltaic materials.However,QD solar cell production sufers from small-areabased spin-coating fabrication methods and unstable QD ink.Herein,the QD ink stability mechanism was fully investigated according to Lewis acid–base theory and colloid stability theory.We further studied a mixed solvent system using dimethylformamide and butylamine,compatible with the scalable manufacture of method-blade coating.Based on the ink system,100 cm2 of uniform and dense near-infrared PbS QDs(~0.96 eV)flm was successfully prepared by blade coating.The average efciencies of above absorber-based devices reached 11.14%under AM1.5G illumination,and the 800 nm-fltered efciency achieved 4.28%.Both were the top values among blade coating method based devices.The newly developed ink showed excellent stability,and the device performance based on the ink stored for 7 h was similar to that of fresh ink.The matched solvent system for stable PbS QD ink represents a crucial step toward large area blade coating photoelectric devices.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA10010500).
文摘Purpose In the JUNO,the LS serves as the medium for detecting neutrinos.When purifying the LS using HPN,it is essential to ensure low background levels of radioactive krypton and argon in the HPN Methods Using the low-temperature physical adsorption properties of activated carbon to adsorb and separate radioactive gases such as radon,krypton,and argon from nitrogen in a liquid nitrogen environment.Results Our results indicated that the Kr concentration in the HPN purified by HP activated carbon is 6.84μBq/m,and the Ar concentration is 3.6μBq/m for overground HPN,while the Kr concentration is 31.4μBq/m for underground HPN.The^(85)Kr concentration in the nitrogen purified by coconut shell activated carbon is 0.46μBq/m.Conclusions After adsorption with activated carbon,the content of^(39)Kr and Ar in HPN is lower than the 50μBq/m required by JUNO.This work validates that the^(85)Kr and^(39)Ar concentrations in HPN is fit the JUNO requirement.
基金supported by the seed project of Wuhan National Laboratory for Optoelectronicsthe National 1000 Young Talents project and the National Natural Science Foundation of China(NSFC 61274055 and 61322401)。
文摘Photodetectors convert photons into current or voltage outputs and are thus widely used for spectroscopy,imaging and sensing.Traditional photodetectors generally show a consistent-polarity response to incident photons within their broadband responsive spectrum.Here we introduced a new type of photodetector employing SnS_(2) nanosheets sensitized with PbS colloidal quantum dots(CQDs)that are not only sensitive(~105AW−1)and broadband(300–1000 nm)but also spectrally distinctive,that is,show distinctive(positive or negative)photoresponse toward incident photons of different wavelengths.A careful mechanism study revealed illumination-modulated Schottky contacts between SnS_(2) nanosheets and Au electrodes,altering the photoresponse polarity toward incident photons of different wavelengths.Finally,we applied our SnS_(2) nanosheet/PbS CQDs hybrid photodetector to differentiate the color temperature of emission from a series of white light-emitting diodes(LEDs),showcasing the unique application of our novel photodetectors.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61725401 and 61904058)the National Key R&D Program of China(No.2016YFA0204000)+3 种基金the Innovation Fund of Wuhan National Laboratory for Optoelectronics(WNLO)the National Postdoctoral Program for Innovative Talent(No.BX20190127)China Postdoctoral Science Foundation Project(No.2019M662623)The authors thank the Analytical and Testing Center of Huazhong University of Science and Technology(HUST)and the facility support of the Center for Nanoscale Characterization and Devices,WNLO-HUST.
文摘Direct X-ray detectors are considered as competitive next-generation X-ray detectors because of their high spatial resolution,high sensitivity,and simple device configuration.However,their potential is largely limited by the imperfections of traditional materials,such as the low crystallization temperature of α-Se and the low atomic numbers of α-Si and α-Se.Here,we report the Sb_(2)Se_(3) X-ray thin-film detector with a p-n junction structure,which exhibited a sensitivity of 106.3 μC/(Gyair·cm^(2))and response time of<2.5 ms.This decent performance and the various advantages of Sb_(2)Se_(3),such as the average atomic number of 40.8 and μτ product(μ is the mobility,and τ is the carrier lifetime)of 1.29×1O^(-5) cm^(2)/V,indicate its potential for application in X-ray detection.
文摘Copper tin sulfide (Cu2SnS3) was a potential earth abundant absorber material for photovoltaic device application. In this contribution, triclinic Cu2SnS3 film with phase pure composition and large grain size was fabricated from a hydrazine solution process using Cu, Sn and S as the precursors. Absorption measurement revealed this Cu2SnS3 film had a direct optical band gap of 0.88 eV, and Hall effect measurement indicated the film was p-type with hole mobility of 0.86 cmE/Vs. Finally Mo/Cu2SnS3/ CdS/ZnO/AZO/Au was produced and the best device efficiency achieved was 0.78%. Also, this device showed improved device performance during ambient storage. This study laid some foundation for the further improve- ment of Cu2SnS3 solar cell.