Brucellosis is a zoonotic infectious and allergic disease caused by Brucella bacteria.Brucellosis occurs worldwide and has had a huge economic impact on the livestock industry in many countries and regions.It has beco...Brucellosis is a zoonotic infectious and allergic disease caused by Brucella bacteria.Brucellosis occurs worldwide and has had a huge economic impact on the livestock industry in many countries and regions.It has become a major public health problem.Brucella is an endoparasitic,non-motile Gram-negative bacterium capable of surviving within a diverse range of domestic animal hosts.展开更多
本文提出了一种新型多模SRLR (square ring loaded resonators)结构,并基于该谐振结构设计了一款具有高共模噪声抑制的双通带超导平衡滤波器.此外,本文详细地给出了该谐振器的差共模谐振机理,拓扑结构,模拟仿真结果.基于上述分析,使用0....本文提出了一种新型多模SRLR (square ring loaded resonators)结构,并基于该谐振结构设计了一款具有高共模噪声抑制的双通带超导平衡滤波器.此外,本文详细地给出了该谐振器的差共模谐振机理,拓扑结构,模拟仿真结果.基于上述分析,使用0.5 mm厚度的氧化镁(MgO)基片上的钇钡铜氧(YBCO)高温超导薄膜设计制作一款四阶双通带平衡滤波器,该滤波器的两个通带的中心频率分别为2.2 GHz和3.5 GHz,带内的损耗分别为0.1 d B和0.12 dB,两个通带内的共模抑制分别为74.9 d B和67.4 dB.其测试曲线、模拟仿真曲线、理论计算具有良好的吻合度,验证了所提出滤波器的设计方法的正确性.展开更多
A rainband meridional shift index (RMSI) is defined and used to statistically prove that the East Asian summer monsoon rainband is usually significantly more northward in the early summer of solar maximum years than...A rainband meridional shift index (RMSI) is defined and used to statistically prove that the East Asian summer monsoon rainband is usually significantly more northward in the early summer of solar maximum years than that of solar minimum years. By applying continuous wavelet transform, cross wavelet transform, and wavelet coherence, it is found that throughout most of the 20th century, the significant decadal oscillations of sunspot number (SSN) and the RMSI are phase-locked and since the 1960s, the SSN has led the RMSI slightly by approximately 1.4 yr. Wind and Eliassen-Palm (EP) flux analysis shows that the decadal meridional oscillation of the June rainband likely re- sults from both a stronger or earlier onset of the tropical monsoon and poleward shift of the subtropical westerly jet in high-solar months of May and June. The dynamical responses of the lower tropical monsoon and the upper subtropical westerly jet to the 11-yr solar cycle transmit bottom-up and top-down solar signals, respectively, and the synergistic actions between the monsoon and the jet likely amplify the solar signal at the northern boundary of the monsoon to some extent.展开更多
Associated with global warming, climate extremes such as extreme temperature will significantly increase. Understanding how climate change will impact the airflights is important to the planning of future flight opera...Associated with global warming, climate extremes such as extreme temperature will significantly increase. Understanding how climate change will impact the airflights is important to the planning of future flight operations. In this study, the impacts of 1.5 and 2 degree's global warming on the aircraft takeoff performance in China are investigated using a unique climate projection data from an international collaboration project named HAPPI. It is found that the mean summer daily maximum temperature, which is a major factor that affects the flight through changing the aircraft's takeoff weight, will increase significantly with magnitude less than 1.5℃ over most parts of China except for the Tibetan Plateau. The half a degree additional global warming will lead to higher extreme temperature in the arid and semi-arid western China, the Tibetan Plateau and the northeastern China, while the change in eastern China is weak. Five airports including Beijing, Shanghai, Kunming, Lasa and Urumqi will see ~1.0°-2.0℃(1.4°-3.0℃) higher daily maximum temperature under 1.5℃(2.0℃) scenario. The half-degree additional warming will lead to a shift toward higher extreme temperature in these five sites. For both1.5° and 2.0℃ scenarios, the number of weight-restriction days will increase significantly at 3 airports including Beijing, Shanghai, and Lasa. Urumqi will witness an increase of weight-restriction days only in 2.0℃ future.展开更多
Phase changes in the precipitation processes of early winter and late spring in midlatitude regions represent challenges when forecasting the timing and magnitude of snowfall.On 4 April 2018,a heavy snow process occur...Phase changes in the precipitation processes of early winter and late spring in midlatitude regions represent challenges when forecasting the timing and magnitude of snowfall.On 4 April 2018,a heavy snow process occurred in Beijing and northwestern Hebei Province,becoming the most delayed occurrence of heavy spring snow ever recorded over Beijing in the last 30 years.This paper uses observational and numerical simulation data to investigate the causes for the rapid rain-to-snow(RRTS)phase transition during this process.The following results are obtained.(1)Return flows(RFs),an interesting type of easterly wind,including those at 1000,925,and 800 hPa,played an important role in this heavy snow process and presented a characteristic"sandwich"structure.The RFs,complex topography,and snow particles that dominated the clouds,were the three key factors for the RRTS transition.(2)The RRTS transition in the plains was directly related to the RF at 925 hPa,which brought about advective cooling initiated approximately 4-6 h before the onset of precipitation.Then,the RF played a role of diabatic cooling when snow particles began to fall at the onset of precipitation.(3)The RRTS transition in the northern part of the Taihang Mountains was closely related to the relatively high altitude that led to a lower surface temperature owing to the vertical temperature lapse rate.Both immediately before and after the onset of precipitation,the snow particles in clouds entrained the middle-level cold air downward,causing the melting layer(from surface to the 0℃-isotherm level)to become very thin;and thus the snow particles did not have adequate time to melt before falling to the ground.(4)The rapid RRTS over the Yanqing mountainous area in the northwest of Beijing could have involved all the three concurrent mechanisms:the advective cooling of RF,the melting cooling of cloud snow particles,and the high-altitude effect.Compared with that in the plain area with less urbanization the duration of the RRTS in the plain area with significant urbanization was extended by approximately 2 h.展开更多
Achieving full-polarization(σ)invisibility on an arbitrary three-dimensional(3D)platform is a long-held knotty issue yet extremely promising in real-world stealth applications.However,state-of-the-art invisibility cl...Achieving full-polarization(σ)invisibility on an arbitrary three-dimensional(3D)platform is a long-held knotty issue yet extremely promising in real-world stealth applications.However,state-of-the-art invisibility cloaks typically work under a specific polarization because the anisotropy and orientation-selective resonant nature of artificial materials made theσ-immune operation elusive and terribly challenging.Here,we report a deterministic approach to engineer a metasurface skin cloak working under an arbitrary polarization state by theoretically synergizing two cloaking phase patterns required,respectively,at spin-up(σ+)and spin-down(σ−)states.Therein,the wavefront of any light impinging on the cloak can be well preserved since it is a superposition ofσ+andσ−wave.To demonstrate the effectiveness and applicability,several proof-of-concept metasurface cloaks are designed to wrap over a 3D triangle platform at microwave frequency.Results show that our cloaks are essentially capable of restoring the amplitude and phase of reflected beams as if light was incident on a flat mirror or an arbitrarily predesigned shape under full polarization states with a desirable bandwidth of~17.9%,conceiving or deceiving an arbitrary object placed inside.Our approach,deterministic and robust in terms of accurate theoretical design,reconciles the milestone dilemma in stealth discipline and opens up an avenue for the extreme capability of ultrathin 3D cloaking of an arbitrary shape,paving up the road for real-world applications.展开更多
Safe detection of an arbitrarily shaped platform is critical for survivability, rescue, or navigation safety in a remote region. Metasurfaces afford great potential due to their strong electromagnetic(EM) wave control...Safe detection of an arbitrarily shaped platform is critical for survivability, rescue, or navigation safety in a remote region. Metasurfaces afford great potential due to their strong electromagnetic(EM) wave control. However,studies have mainly focused on the physics and design of metasurfaces on planar plates, which does not satisfy the current requirements of aerodynamics and aesthetics. Herein, we propose a sophisticated strategy to design a metasurface that can wrap over arbitrarily shaped objects with moderate curvature on which optical aberrations are commonly introduced. By designing each meta-atom on the basis of the required position and phase compensation, exact EM wavefronts are restored. For verification, several conformal metasurfaces were designed and numerically studied on metallic cylinders at the microwave spectrum. A proof-of-concept device is fabricated and is experimentally characterized. The results demonstrate the availability of the desirable dual-beam superscatterer with strong backscattering enhancement toward two directions, thus indicating that the distortions induced by an arbitrary platform can be efficiently corrected. Our method affords an efficient alternative for designing highperformance multifunctional optoelectronic devices equipped on a moderately curved platform.展开更多
With the discovery of the pivotal role of macrophages in tissue regeneration through shaping the tissue immune microenvironment, various immunomodulatory strategies have been proposed to modify traditional biomaterial...With the discovery of the pivotal role of macrophages in tissue regeneration through shaping the tissue immune microenvironment, various immunomodulatory strategies have been proposed to modify traditional biomaterials. Decellularized extracellular matrix (dECM) has been extensively used in the clinical treatment of tissue injury due to its favorable biocompatibility and similarity to the native tissue environment. However, most reported decellularization protocols may cause damage to the native structure of dECM, which undermines its inherent advantages and potential clinical applications. Here, we introduce a mechanically tunable dECM prepared by optimizing the freeze-thaw cycles. We demonstrated that the alteration in micromechanical properties of dECM resulting from the cyclic freeze-thaw process contributes to distinct macrophage-mediated host immune responses to the materials, which are recently recognized to play a pivotal role in determining the outcome of tissue regeneration. Our sequencing data further revealed that the immunomodulatory effect of dECM was induced via the mechnotrasduction pathways in macrophages. Next, we tested the dECM in a rat skin injury model and found an enhanced micromechanical property of dECM achieved with three freeze-thaw cycles significantly promoted the M2 polarization of macrophages, leading to superior wound healing. These findings suggest that the immunomodulatory property of dECM can be efficiently manipulated by tailoring its inherent micromechanical properties during the decellularization process. Therefore, our mechanics-immunomodulation-based strategy provides new insights into the development of advanced biomaterials for wound healing.展开更多
We report that the twisted few layer graphite(tFL-graphite)is a new family of moiréheterostructures(MHSs),which has richer and highly tunable moiréflat band structures entirely distinct from all the known MH...We report that the twisted few layer graphite(tFL-graphite)is a new family of moiréheterostructures(MHSs),which has richer and highly tunable moiréflat band structures entirely distinct from all the known MHSs.A tFL-graphite is composed of two few-layer graphite(Bernal stacked multilayer graphene),which are stacked on each other with a small twisted angle.The moiréband structure of the tFL-graphite strongly depends on the layer number of its composed two van der Waals layers.Near the magic angle,a tFL-graphite always has two nearly flat bands coexisting with a few pairs of narrowed dispersive(parabolic or linear)bands at the Fermi level,thus,enhances the DOS at EF.This coexistence property may also enhance the possible superconductivity as been demonstrated in other multiband superconductivity systems.Therefore,we expect strong multiband correlation effects in tFL-graphite.Meanwhile,a proper perpendicular electric field can induce several isolated nearly flat bands with nonzero valley Chern number in some simple tFL-graphites,indicating that tFL-graphite is also a novel topological flat band system.展开更多
Though several theoretical models have been proposed to design electronic flat-bands, the definite experimental realization in two-dimensional atomic crystal is still lacking. Here we propose a novel and realistic fla...Though several theoretical models have been proposed to design electronic flat-bands, the definite experimental realization in two-dimensional atomic crystal is still lacking. Here we propose a novel and realistic flat-band model based on threefold degenerate p-orbitals in two-dimensional ionic materials. Our theoretical analysis and first-principles calculations show that the proposed flat-band can be realized in 1 T layered materials of alkali-metal chalogenides and metal-carbon group compounds. Some of the former are theoretically predicted to be stable as layered materials(e.g., K2 S), and some of the latter have been experimentally fabricated in previous works(e.g., Gd2 CCl2). More interestingly, the flat-band is partially filled in the heterostructure of a K2 S monolayer and graphene layers. The spin polarized nearly flatband can be realized in the ferromagnetic state of a Gd2 CCl2 monolayer, which has been fabricated in experiments. Our theoretical model together with the material predictions provide a realistic platform for the study of flat-bands and related exotic quantum phases.展开更多
Topological insulators,a class of typical topological materials in both two dimensions and three dimensions,are insulating in bulk and metallic at surface.The spin-momentum locked surface states and peculiar transport...Topological insulators,a class of typical topological materials in both two dimensions and three dimensions,are insulating in bulk and metallic at surface.The spin-momentum locked surface states and peculiar transport properties exhibit promising potential applications on quantum devices,which generate extensive interest in the last decade.Dephasing is the process of the loss of phase coherence,which inevitably exists in a realistic sample.In this review,we focus on recent progress in dephasing effects on the topological insulators.In general,there are two types of dephasing processes:normal dephasing and spin dephasing.In two-dimensional topological insulators,the phenomenologically numerical investigation shows that the longitudinal resistance plateaus is robust against normal dephasing but fragile with spin dephasing.Several microscopic mechanisms of spin dephasing are then discussed.In three-dimensional topological insulators,the helical surface states exhibit a helical spin texture due to the spin-momentum locking mechanism.Thus,normal dephasing has close connection to spin dephasing in this case,and gives rise to anomalous "gap-like" feature.Dephasing effects on properties of helical surface states are investigated.展开更多
As a manifestation of the underlying physical nature, quailtum oscillations with the applied magnetic field (B) are one of the most important topics in condensed matter physics. The research history can be tracked to ...As a manifestation of the underlying physical nature, quailtum oscillations with the applied magnetic field (B) are one of the most important topics in condensed matter physics. The research history can be tracked to 1930 when Lev Shubnikov and W. J. de Haas observed Shubnikov-de Haas (SdH) oscillations in the magnetoresistance (MR) of bismuth crystals. Since then, researchers have observed quantum oscillations in diverse materials, including metals, metallic compounds, semimetals, semiconductors and even insula tors, as well as in artificial mesoscopic microstructures . Nowadays, quantum oscillation detec ted by magneto transport investigation has been a powerful tool to detect the physical properties in solid-state systems.展开更多
A Kramers pair of helical edge states in quantum spin Hall effect (QSHE) is robust against normal dephasing but not robust to spin dephasing. In our work, we provide an effective spin dephasing mechanism in the pudd...A Kramers pair of helical edge states in quantum spin Hall effect (QSHE) is robust against normal dephasing but not robust to spin dephasing. In our work, we provide an effective spin dephasing mechanism in the puddles of two-dimensional (2D) QSHE, which is simulated as quantum dots modeled by 2D massive Dirac Hamiltouian. We demonstrate that the spin dephasing effect can originate from the combination of the Rashba spin-orbit coupling and electron-phonon interaction, which gives rise to inelastic backscattering in edge states within the topological insulator quantum dots, although the time-reversal symmetry is preserved throughout. Finally, we discuss the tunneling between extended helical edge states and local edge states in the QSH quantum dots, which leads to backscattering in the extended edge states. These results can explain the more robust edge transport in InAs/GaSb QSH systems.展开更多
The interplay between quenched disorder and critical behavior in quantum phase transitions is conceptually fascinating and of fundamental importance for understanding phase transitions. However, it is still unclear wh...The interplay between quenched disorder and critical behavior in quantum phase transitions is conceptually fascinating and of fundamental importance for understanding phase transitions. However, it is still unclear whether or not the quenched disorder influences the universality class of quantum phase transitions. More crucially, the absence of superconducting-metal transitions under in-plane magnetic fields in 2D superconductors imposes constraints on the universality of quantum criticality. Here, we observe the thickness-tuned universality class of superconductor-metal transition by changing the disorder strength in b - W films with varying thickness. The finite-size scaling uncovers the switch of universality class: quantum Griffiths singularity to multiple quantum criticality at a critical thickness of tc⊥1~ 8 nm and then from multiple quantum criticality to single criticality at tc⊥2~ 16 nm. Moreover, the superconducting-metal transition is observed for the first time under in-plane magnetic fields and the universality class is changed at tc‖~ 8 nm. The observation of thickness-tuned universality class under both out-of-plane and in-plane magnetic fields provides broad information for the disorder effect on superconducting-metal transitions and quantum criticality.展开更多
Scaling theory predicts complete localization in d = 2 in quantum systems belonging to the orthogonal class(i.e., with timereversal symmetry and spin-rotation symmetry). The conductance g behaves as g^exp(-L/l) with s...Scaling theory predicts complete localization in d = 2 in quantum systems belonging to the orthogonal class(i.e., with timereversal symmetry and spin-rotation symmetry). The conductance g behaves as g^exp(-L/l) with system size L and localization length l in the strong disorder limit. However, classical systems can always have metallic states in which Ohm’s law shows a constant g in d=2. We study a two-dimensional quantum percolation model by controlling dephasing effects. The numerical investigation of g aims at simulating a quantum-to-classical percolation evolution. An unexpected metallic phase, where g increases with L, generates immense interest before the system becomes completely classical. Furthermore, the analysis of the scaling plot of g indicates a metal-insulator crossover.展开更多
基金supported by Major Infectious Diseases Surveillance Projects[Grant No.33002,33003,33055].
文摘Brucellosis is a zoonotic infectious and allergic disease caused by Brucella bacteria.Brucellosis occurs worldwide and has had a huge economic impact on the livestock industry in many countries and regions.It has become a major public health problem.Brucella is an endoparasitic,non-motile Gram-negative bacterium capable of surviving within a diverse range of domestic animal hosts.
文摘本文提出了一种新型多模SRLR (square ring loaded resonators)结构,并基于该谐振结构设计了一款具有高共模噪声抑制的双通带超导平衡滤波器.此外,本文详细地给出了该谐振器的差共模谐振机理,拓扑结构,模拟仿真结果.基于上述分析,使用0.5 mm厚度的氧化镁(MgO)基片上的钇钡铜氧(YBCO)高温超导薄膜设计制作一款四阶双通带平衡滤波器,该滤波器的两个通带的中心频率分别为2.2 GHz和3.5 GHz,带内的损耗分别为0.1 d B和0.12 dB,两个通带内的共模抑制分别为74.9 d B和67.4 dB.其测试曲线、模拟仿真曲线、理论计算具有良好的吻合度,验证了所提出滤波器的设计方法的正确性.
基金Supported by the National(Key) Basic Research and Development(973) Program of China(2012CB957804 and 2012CB417205)National Natural Science Foundation of China(41305131,41405146,and 41505079)
文摘A rainband meridional shift index (RMSI) is defined and used to statistically prove that the East Asian summer monsoon rainband is usually significantly more northward in the early summer of solar maximum years than that of solar minimum years. By applying continuous wavelet transform, cross wavelet transform, and wavelet coherence, it is found that throughout most of the 20th century, the significant decadal oscillations of sunspot number (SSN) and the RMSI are phase-locked and since the 1960s, the SSN has led the RMSI slightly by approximately 1.4 yr. Wind and Eliassen-Palm (EP) flux analysis shows that the decadal meridional oscillation of the June rainband likely re- sults from both a stronger or earlier onset of the tropical monsoon and poleward shift of the subtropical westerly jet in high-solar months of May and June. The dynamical responses of the lower tropical monsoon and the upper subtropical westerly jet to the 11-yr solar cycle transmit bottom-up and top-down solar signals, respectively, and the synergistic actions between the monsoon and the jet likely amplify the solar signal at the northern boundary of the monsoon to some extent.
基金supported by the National Natural Science Foundation of China(41330423 and 41420104006)supported by the Applied Basic Research Programs of Science and Technology Department of Sichuan Province(2015JY0109)the Grant of Civil Aviation University of China(2016QD05X)
文摘Associated with global warming, climate extremes such as extreme temperature will significantly increase. Understanding how climate change will impact the airflights is important to the planning of future flight operations. In this study, the impacts of 1.5 and 2 degree's global warming on the aircraft takeoff performance in China are investigated using a unique climate projection data from an international collaboration project named HAPPI. It is found that the mean summer daily maximum temperature, which is a major factor that affects the flight through changing the aircraft's takeoff weight, will increase significantly with magnitude less than 1.5℃ over most parts of China except for the Tibetan Plateau. The half a degree additional global warming will lead to higher extreme temperature in the arid and semi-arid western China, the Tibetan Plateau and the northeastern China, while the change in eastern China is weak. Five airports including Beijing, Shanghai, Kunming, Lasa and Urumqi will see ~1.0°-2.0℃(1.4°-3.0℃) higher daily maximum temperature under 1.5℃(2.0℃) scenario. The half-degree additional warming will lead to a shift toward higher extreme temperature in these five sites. For both1.5° and 2.0℃ scenarios, the number of weight-restriction days will increase significantly at 3 airports including Beijing, Shanghai, and Lasa. Urumqi will witness an increase of weight-restriction days only in 2.0℃ future.
基金Supported by the National Natural Science Foundation of China(41475051 and 42075008)Beijing Natural Science Foundation(8192019)Civil Aviation Administration of China Security Capacity Building Project(20600822)。
文摘Phase changes in the precipitation processes of early winter and late spring in midlatitude regions represent challenges when forecasting the timing and magnitude of snowfall.On 4 April 2018,a heavy snow process occurred in Beijing and northwestern Hebei Province,becoming the most delayed occurrence of heavy spring snow ever recorded over Beijing in the last 30 years.This paper uses observational and numerical simulation data to investigate the causes for the rapid rain-to-snow(RRTS)phase transition during this process.The following results are obtained.(1)Return flows(RFs),an interesting type of easterly wind,including those at 1000,925,and 800 hPa,played an important role in this heavy snow process and presented a characteristic"sandwich"structure.The RFs,complex topography,and snow particles that dominated the clouds,were the three key factors for the RRTS transition.(2)The RRTS transition in the plains was directly related to the RF at 925 hPa,which brought about advective cooling initiated approximately 4-6 h before the onset of precipitation.Then,the RF played a role of diabatic cooling when snow particles began to fall at the onset of precipitation.(3)The RRTS transition in the northern part of the Taihang Mountains was closely related to the relatively high altitude that led to a lower surface temperature owing to the vertical temperature lapse rate.Both immediately before and after the onset of precipitation,the snow particles in clouds entrained the middle-level cold air downward,causing the melting layer(from surface to the 0℃-isotherm level)to become very thin;and thus the snow particles did not have adequate time to melt before falling to the ground.(4)The rapid RRTS over the Yanqing mountainous area in the northwest of Beijing could have involved all the three concurrent mechanisms:the advective cooling of RF,the melting cooling of cloud snow particles,and the high-altitude effect.Compared with that in the plain area with less urbanization the duration of the RRTS in the plain area with significant urbanization was extended by approximately 2 h.
基金supports by the National Defense Foundation of China(2019-JCJQ-JJ-081)Youth Talent Lifting Project of the China Association for Science and Technology(17-JCJQ-QT-003)+4 种基金Key Program of Natural Science Foundation of Shaanxi Province(2020JZ-33)Key Principal’s Fund of Air Force Engineering University(XNLX19030601)Villum Fonden of Denmark(Grant No.00022988)the National Key Research and Development Program of China(Grant NO.2017YFA0700202)the National Natural Science Foundation of China(61701082).
文摘Achieving full-polarization(σ)invisibility on an arbitrary three-dimensional(3D)platform is a long-held knotty issue yet extremely promising in real-world stealth applications.However,state-of-the-art invisibility cloaks typically work under a specific polarization because the anisotropy and orientation-selective resonant nature of artificial materials made theσ-immune operation elusive and terribly challenging.Here,we report a deterministic approach to engineer a metasurface skin cloak working under an arbitrary polarization state by theoretically synergizing two cloaking phase patterns required,respectively,at spin-up(σ+)and spin-down(σ−)states.Therein,the wavefront of any light impinging on the cloak can be well preserved since it is a superposition ofσ+andσ−wave.To demonstrate the effectiveness and applicability,several proof-of-concept metasurface cloaks are designed to wrap over a 3D triangle platform at microwave frequency.Results show that our cloaks are essentially capable of restoring the amplitude and phase of reflected beams as if light was incident on a flat mirror or an arbitrarily predesigned shape under full polarization states with a desirable bandwidth of~17.9%,conceiving or deceiving an arbitrary object placed inside.Our approach,deterministic and robust in terms of accurate theoretical design,reconciles the milestone dilemma in stealth discipline and opens up an avenue for the extreme capability of ultrathin 3D cloaking of an arbitrary shape,paving up the road for real-world applications.
基金National Natural Science Foundation of China(NSFC)(61501499)National Defense Foundation of China(2201078)+2 种基金Key Program of Natural Science Foundation of Shaanxi Province(2017KJXX-24)China Scholarship Council(CSC)(20173059)Aviation Science Foundation of China(20161996009)
文摘Safe detection of an arbitrarily shaped platform is critical for survivability, rescue, or navigation safety in a remote region. Metasurfaces afford great potential due to their strong electromagnetic(EM) wave control. However,studies have mainly focused on the physics and design of metasurfaces on planar plates, which does not satisfy the current requirements of aerodynamics and aesthetics. Herein, we propose a sophisticated strategy to design a metasurface that can wrap over arbitrarily shaped objects with moderate curvature on which optical aberrations are commonly introduced. By designing each meta-atom on the basis of the required position and phase compensation, exact EM wavefronts are restored. For verification, several conformal metasurfaces were designed and numerically studied on metallic cylinders at the microwave spectrum. A proof-of-concept device is fabricated and is experimentally characterized. The results demonstrate the availability of the desirable dual-beam superscatterer with strong backscattering enhancement toward two directions, thus indicating that the distortions induced by an arbitrary platform can be efficiently corrected. Our method affords an efficient alternative for designing highperformance multifunctional optoelectronic devices equipped on a moderately curved platform.
基金supported by National Natural Science Foundation of China(82071167,82001095,81970975,81901055,82201124,82201119)China Postdoctoral Science Foundation(2021TQ0379,2022M713575)+2 种基金Guangdong Basic and Applied Basic Research Foundation(2021A1515110380,2023A1515011963)Health and Medical Research Fund(No.09201466)the Food and Health Bureau,the Government of the HKSAR,China.
文摘With the discovery of the pivotal role of macrophages in tissue regeneration through shaping the tissue immune microenvironment, various immunomodulatory strategies have been proposed to modify traditional biomaterials. Decellularized extracellular matrix (dECM) has been extensively used in the clinical treatment of tissue injury due to its favorable biocompatibility and similarity to the native tissue environment. However, most reported decellularization protocols may cause damage to the native structure of dECM, which undermines its inherent advantages and potential clinical applications. Here, we introduce a mechanically tunable dECM prepared by optimizing the freeze-thaw cycles. We demonstrated that the alteration in micromechanical properties of dECM resulting from the cyclic freeze-thaw process contributes to distinct macrophage-mediated host immune responses to the materials, which are recently recognized to play a pivotal role in determining the outcome of tissue regeneration. Our sequencing data further revealed that the immunomodulatory effect of dECM was induced via the mechnotrasduction pathways in macrophages. Next, we tested the dECM in a rat skin injury model and found an enhanced micromechanical property of dECM achieved with three freeze-thaw cycles significantly promoted the M2 polarization of macrophages, leading to superior wound healing. These findings suggest that the immunomodulatory property of dECM can be efficiently manipulated by tailoring its inherent micromechanical properties during the decellularization process. Therefore, our mechanics-immunomodulation-based strategy provides new insights into the development of advanced biomaterials for wound healing.
基金the National Natural Science Foundation of China(Grant Nos.11874160,12141401,and 11534001)the National Key Research and Development Program of China(Grant No.2017YFA0403501)the Fundamental Research Funds for the Central Universities(HUST:2017KFYXJJ027).
文摘We report that the twisted few layer graphite(tFL-graphite)is a new family of moiréheterostructures(MHSs),which has richer and highly tunable moiréflat band structures entirely distinct from all the known MHSs.A tFL-graphite is composed of two few-layer graphite(Bernal stacked multilayer graphene),which are stacked on each other with a small twisted angle.The moiréband structure of the tFL-graphite strongly depends on the layer number of its composed two van der Waals layers.Near the magic angle,a tFL-graphite always has two nearly flat bands coexisting with a few pairs of narrowed dispersive(parabolic or linear)bands at the Fermi level,thus,enhances the DOS at EF.This coexistence property may also enhance the possible superconductivity as been demonstrated in other multiband superconductivity systems.Therefore,we expect strong multiband correlation effects in tFL-graphite.Meanwhile,a proper perpendicular electric field can induce several isolated nearly flat bands with nonzero valley Chern number in some simple tFL-graphites,indicating that tFL-graphite is also a novel topological flat band system.
基金supported by the National Basic Research Program of China(2019YFA0308403 and 2022YFA1403700)the National Natural Science Foundation of China(12147126)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
基金supported by the National Basic Research Program of China(2015CB921102 and 2019YFA0308403)the National Natural Science Foundation of China(11674028 and11822407)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)China Postdoctoral Science Foundation(2020M670011)。
文摘Though several theoretical models have been proposed to design electronic flat-bands, the definite experimental realization in two-dimensional atomic crystal is still lacking. Here we propose a novel and realistic flat-band model based on threefold degenerate p-orbitals in two-dimensional ionic materials. Our theoretical analysis and first-principles calculations show that the proposed flat-band can be realized in 1 T layered materials of alkali-metal chalogenides and metal-carbon group compounds. Some of the former are theoretically predicted to be stable as layered materials(e.g., K2 S), and some of the latter have been experimentally fabricated in previous works(e.g., Gd2 CCl2). More interestingly, the flat-band is partially filled in the heterostructure of a K2 S monolayer and graphene layers. The spin polarized nearly flatband can be realized in the ferromagnetic state of a Gd2 CCl2 monolayer, which has been fabricated in experiments. Our theoretical model together with the material predictions provide a realistic platform for the study of flat-bands and related exotic quantum phases.
基金We are grateful to Y. Q. Li, Q. F. Sun and S. G. Cheng for collaboration and for their important contributions reviewed in this paper.supported by the National Natural Science Foundation of China (Grant Nos.11534001,11822407,and 11674028)NBRPC (Grant Nos. 2017YFA0303301 and 2017YFA0304600)NSF of Jiangsu Province,China (Grant No. BK20160007).H.Jiang was also funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Topological insulators,a class of typical topological materials in both two dimensions and three dimensions,are insulating in bulk and metallic at surface.The spin-momentum locked surface states and peculiar transport properties exhibit promising potential applications on quantum devices,which generate extensive interest in the last decade.Dephasing is the process of the loss of phase coherence,which inevitably exists in a realistic sample.In this review,we focus on recent progress in dephasing effects on the topological insulators.In general,there are two types of dephasing processes:normal dephasing and spin dephasing.In two-dimensional topological insulators,the phenomenologically numerical investigation shows that the longitudinal resistance plateaus is robust against normal dephasing but fragile with spin dephasing.Several microscopic mechanisms of spin dephasing are then discussed.In three-dimensional topological insulators,the helical surface states exhibit a helical spin texture due to the spin-momentum locking mechanism.Thus,normal dephasing has close connection to spin dephasing in this case,and gives rise to anomalous "gap-like" feature.Dephasing effects on properties of helical surface states are investigated.
基金the National Key Research and Development Program of China (Grant Nos. 2018YFA0305604 and 2017YFA0303300)the National Natural Science Foundation of China (Grant No. 11774008)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000).
文摘As a manifestation of the underlying physical nature, quailtum oscillations with the applied magnetic field (B) are one of the most important topics in condensed matter physics. The research history can be tracked to 1930 when Lev Shubnikov and W. J. de Haas observed Shubnikov-de Haas (SdH) oscillations in the magnetoresistance (MR) of bismuth crystals. Since then, researchers have observed quantum oscillations in diverse materials, including metals, metallic compounds, semimetals, semiconductors and even insula tors, as well as in artificial mesoscopic microstructures . Nowadays, quantum oscillation detec ted by magneto transport investigation has been a powerful tool to detect the physical properties in solid-state systems.
基金supported by the National Basic Research Program of China(Grant Nos.2015CB921102,2012CB821402 and 2012CB921303)the National Natural Science Foundation of China(Grant Nos.11534001 and11274364)
文摘A Kramers pair of helical edge states in quantum spin Hall effect (QSHE) is robust against normal dephasing but not robust to spin dephasing. In our work, we provide an effective spin dephasing mechanism in the puddles of two-dimensional (2D) QSHE, which is simulated as quantum dots modeled by 2D massive Dirac Hamiltouian. We demonstrate that the spin dephasing effect can originate from the combination of the Rashba spin-orbit coupling and electron-phonon interaction, which gives rise to inelastic backscattering in edge states within the topological insulator quantum dots, although the time-reversal symmetry is preserved throughout. Finally, we discuss the tunneling between extended helical edge states and local edge states in the QSH quantum dots, which leads to backscattering in the extended edge states. These results can explain the more robust edge transport in InAs/GaSb QSH systems.
基金supported by the National Key Research and Development Program of China (2017YFA0303302, 2018YFA030560 and 2017YFA0303301)the National Natural Science Foundation of China (11934005, 11474058, 11874116, 11674028 and 11534001)+9 种基金the National Natural Science Foundation of China (U1932154)the Science and Technology Commission of Shanghai (19511120500)the Shanghai Municipal Science and Technology Major Project (2019SHZDZX01)the Program of Shanghai Academic/Technology Research Leader (20XD1400200)supported by National Science Foundation Cooperative Agreement No. DMR-1644779, No. DMR-1157490the State of Floridasupport from China Postdoctoral Innovative Talents Support Program (BX20190085)China Postdoctoral Science Foundation (2019 M661331)supported by the Scientific Instrument Developing Project of CAS (YJKYYQ20180059)the Youth Innovation Promotion Association CAS (2018486)。
文摘The interplay between quenched disorder and critical behavior in quantum phase transitions is conceptually fascinating and of fundamental importance for understanding phase transitions. However, it is still unclear whether or not the quenched disorder influences the universality class of quantum phase transitions. More crucially, the absence of superconducting-metal transitions under in-plane magnetic fields in 2D superconductors imposes constraints on the universality of quantum criticality. Here, we observe the thickness-tuned universality class of superconductor-metal transition by changing the disorder strength in b - W films with varying thickness. The finite-size scaling uncovers the switch of universality class: quantum Griffiths singularity to multiple quantum criticality at a critical thickness of tc⊥1~ 8 nm and then from multiple quantum criticality to single criticality at tc⊥2~ 16 nm. Moreover, the superconducting-metal transition is observed for the first time under in-plane magnetic fields and the universality class is changed at tc‖~ 8 nm. The observation of thickness-tuned universality class under both out-of-plane and in-plane magnetic fields provides broad information for the disorder effect on superconducting-metal transitions and quantum criticality.
基金supported by the National Basic Research Program of China(Grant Nos.2015CB921102,2017YFA0303301,and 2017YFA0304600)National Natural Science Foundation of China(Grant Nos.11504008,11574245,11674028,and 11822407)
文摘Scaling theory predicts complete localization in d = 2 in quantum systems belonging to the orthogonal class(i.e., with timereversal symmetry and spin-rotation symmetry). The conductance g behaves as g^exp(-L/l) with system size L and localization length l in the strong disorder limit. However, classical systems can always have metallic states in which Ohm’s law shows a constant g in d=2. We study a two-dimensional quantum percolation model by controlling dephasing effects. The numerical investigation of g aims at simulating a quantum-to-classical percolation evolution. An unexpected metallic phase, where g increases with L, generates immense interest before the system becomes completely classical. Furthermore, the analysis of the scaling plot of g indicates a metal-insulator crossover.