Chemical looping dry reforming(CLDR) is an innovative technology for CO2 utilization using the chemical looping principle.The CLDR process consists of three stages,i.e.CH4 reduction,CO2 reforming,and air oxidation.S...Chemical looping dry reforming(CLDR) is an innovative technology for CO2 utilization using the chemical looping principle.The CLDR process consists of three stages,i.e.CH4 reduction,CO2 reforming,and air oxidation.Spinel nickel ferrite(NiFe2O4) was prepared and its multi-cycle performance as an oxygen carrier for CLDR was experimentally investigated.X-ray diffraction(XRD) and Laser Raman spectroscopy showed that a pure spinel crystalline phase(NiFe2O4) was obtained by a parallel flow co-precipitating method.NiFe2O4was reduced into Fe-Ni alloy and wustite(FexO) during the CH4 reduction process.Subsequent oxidation of the reduced oxygen carrier was performed with CO2 as an oxidant to form an intermediate state:a mixture of spinel Ni(1-x)Fe(2+x)O4,Fe(2+y)O4 and metallic Ni.And CO was generated in parallel during this stage.Approximate 185 mL of CO was generated for 1 g spinel NiFe2O4 in a single cycle.The intermediate oxygen carrier was fully oxidized in the air oxidation stage to form a mixture of Ni(1+x)Fe(2-x)O4 and Fe2O3.Although the original state of oxygen carrier(NiFe2O4) was not fully regenerated and agglomeration was observed,a good recyclability was shown in 10 successive redox cycles.展开更多
With the development of arsenic removal technologies, biological method and sulfide method have been applied in industrial fields, other methods have also been applied in arsenic-containing copper flotation, including...With the development of arsenic removal technologies, biological method and sulfide method have been applied in industrial fields, other methods have also been applied in arsenic-containing copper flotation, including coagulation process, ion exchange method, direct precipitation method and so on. In the paper, a short review on the progress of arsenic removal technologies of copper flotation during the last decade is presented, and the importance and the trend of arsenic removal are discussed. The existing and possible strategies of improving copper recovery in porphyry copper ores and rejection of penalty elements such as Tennantite and Enargite in copper flotation concentrates are also presented.展开更多
Air pollution which is detrimental to people’s health is a wide spread problem across many countries around the world.Developing better air quality prediction approaches is an important research issue.Existing method...Air pollution which is detrimental to people’s health is a wide spread problem across many countries around the world.Developing better air quality prediction approaches is an important research issue.Existing methods often focus on the prediction of air pollution concentrations,which is not as intuitive to the public as the air quality levels.In this paper,near future fine-grained air quality level prediction task is explored with a series of machine learning ensemble methods.Included ensemble methods are majority voting,averaging,weighted averaging and 16 different stacking tactics.To investigate the performances of these ensemble methods,comprehensive comparative experiments are conducted.Included contrast models are classical Autoregressive Integrated Moving Average(ARIMA),popular deep learning model Long Short-Term Memory(LSTM)neural network,and nine of the base-level models such as Support Vector Machine(SVM),Random Forest(RF),Logistic Regression(LR)and several boosting models.Datasets acquired from a coastal city Hong Kong and an inland city Beijing are used to train and validate all the models.Experiments show that performances of the ensemble methods outperform most of the individual models,especially when stacking with probability distributions together with engineered original features,which demonstrates the best performance.展开更多
Located in Shangri-La county, Yunnan Province, China’s biggest underground nonferrous mine Pulang Copper Mine is under construction. To date, the defined copper reserves at the Pulang Copper Mine are 4.8 million tonn...Located in Shangri-La county, Yunnan Province, China’s biggest underground nonferrous mine Pulang Copper Mine is under construction. To date, the defined copper reserves at the Pulang Copper Mine are 4.8 million tonnes of copper and an average grade of 0.34%. The mineralized zone is 2300 m long, 600 - 800 m wide, and 1000 m high in a dome shape. The first-stage mining and processing capacity is 12.5 million tonnes of ore per year. By geotechnical investigation, ore haulage is adopted via a drift and ore pass development system. From mineralogical analysis, a majority of the Pulang copper ore body is classified as a type III rock, which is generally considered to be suitable for block-caving methods. As an update to the traditional mine-to-mill approach, a cave-to-mill integrated production concept is then introduced. This is essentially the integration of underground mine production scheduling and monitoring with surface mineral processing management based on fragment size and geometallurgical ore characteristics. Several unique challenges experienced during the project design and construction, as well as a number of features aimed at mitigating these problems, are also discussed in this paper.展开更多
[ Objective ] This study aimed to establish a rapid and effective quarantine method of Koi herpes virus. [ Method] Primers and corresponding TaqMan probe were designed based on the conserved sequence of Koi herpes vir...[ Objective ] This study aimed to establish a rapid and effective quarantine method of Koi herpes virus. [ Method] Primers and corresponding TaqMan probe were designed based on the conserved sequence of Koi herpes virus (KHV) pol-ymerase gene (Sph) to establish a rapid and effective fluorescence quantitative PCR method for Koi herpes virus detection. The cell cultures were detected by using the established fluorescence quantitative PCR assay, and the results were com- pared with that of conventional PCR. [ Result] The sensitivity of fluorescence quantitative PCR was higher than that of conventional PCR. The minimum copy num- ber that could be detected was 1.6 - 102 copies/p.1. The established method was adopted for sample detection, and a reliable diagnostic result could be obtained within 4 h. [Conclusion] The established method is rapid, sensitive, specific and repeatable, which is conducive to the rapid detection of Koi herpes virus. Key words Koi herpes virus; Fluorescence quantitative PCR; Detection展开更多
The co-pressing and co-firing processes are often used to prepare the anode-electrolyte half cells for solid oxide fuel cells(SOFCs).To get a half cell without cracks,the sintering behavior of electrolyte and anode la...The co-pressing and co-firing processes are often used to prepare the anode-electrolyte half cells for solid oxide fuel cells(SOFCs).To get a half cell without cracks,the sintering behavior of electrolyte and anode layers must be controlled carefully.In this work,the sintering behavior展开更多
Mixed conductors of oxygen ion and electron are important materials.They have been used as oxygen permeation membranes or electrodes of fuel cells.Doped LaGaO_3 and La_2Ni O_4 are both mixed conductors,but they have d...Mixed conductors of oxygen ion and electron are important materials.They have been used as oxygen permeation membranes or electrodes of fuel cells.Doped LaGaO_3 and La_2Ni O_4 are both mixed conductors,but they have different crystal structures which will result in different展开更多
Preparation for Glycine-Mg/Al-Layered dou-ble hydroxide(LDH-G)/PVA nanocompositeswas carried out via exfoliation-adsorption routebased on exfoliation of LDH-G in formamide.Theeffect of ultrasonic treatment on the fabr...Preparation for Glycine-Mg/Al-Layered dou-ble hydroxide(LDH-G)/PVA nanocompositeswas carried out via exfoliation-adsorption routebased on exfoliation of LDH-G in formamide.Theeffect of ultrasonic treatment on the fabrication ofLDH-G/PVA nanocomposites was investigated,and the thermal stability of PVA containing the na-no-scale dispersed LDH-G was analyzed.The re-sults of XRD suggest that chains of PVA with展开更多
The authors proposed an integrated gasification fuel cell zero-emission system.The coal char gasification is discussed using high temperature and concentration of CO_(2) produced by solid oxide fuel cells and oxy-fuel...The authors proposed an integrated gasification fuel cell zero-emission system.The coal char gasification is discussed using high temperature and concentration of CO_(2) produced by solid oxide fuel cells and oxy-fuel combustion.The gasification is simulated by Aspen plus based on Gibbs free energy minimization method.Gasification model of pulverized coal char is computed and analyzed.Effects of gas flow rate,pressure,preheating temperature,heat losses on syngas composition,reaction temperature,lower heating value and carbon conversion are studied.Results and parameters are determined as following.The optimum O_(2) flow rate is 20 kg/h.The reaction temperature decreases from 1645 to 1329℃when the CO_(2)flow rate increases from 0 to 5 kg/h,the CO_(2) flow rate should be operated reasonably;lower heating value reduces and reaction temperature increases as the pressure increases;compared to the CO_(2) preheating,O_(2) preheating has greater influence on reaction temperature and lower heating value.展开更多
Double-perovskite type oxide LaSrFeCoO(LSFCO) was used as oxygen carrier for chemical looping steam methane reforming(CL-SMR) due to its unique structure and reactivity. Two different oxidation routes,steam-oxidat...Double-perovskite type oxide LaSrFeCoO(LSFCO) was used as oxygen carrier for chemical looping steam methane reforming(CL-SMR) due to its unique structure and reactivity. Two different oxidation routes,steam-oxidation and steam-air-stepwise-oxidation, were applied to investigate the recovery behaviors of the lattice oxygen in the oxygen carrier. The characterizations of the oxide were determined by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), hydrogen temperature-programmed reduction(H-TPR) and scanning electron microscopy(SEM). The fresh sample LSFCO exhibits a monocrystalline perovskite structure with cubic symmetry and high crystallinity, except for a little impurity phase due to the antisite defect of Fe/Co disorder. The deconvolution distribution of XPS patterns indicated that Co,and Fe are predominantly in an oxidized state(Feand Fe) and(Coand Co), while O 1s exists at three species of lattice oxygen, chemisorbed oxygen and physical adsorbed oxygen. The double perovskite structure and chemical composition recover to the original state after the steam and air oxidation, while the Co ion cannot incorporate into the double perovskite structure and thus form the CoO just via individual steam oxidation. In comparison to the two different oxidation routes, the sample obtained by steam-oxidation exhibits even higher CHconversion, CO and Hselectivity and stronger hydrogen generation capacity.展开更多
Thermodynamic parameters of chemical reactions in the system were carried out through thermodynamic analysis. According to the Gibbs free energy minimization principle of the system, equilibrium composition of the rea...Thermodynamic parameters of chemical reactions in the system were carried out through thermodynamic analysis. According to the Gibbs free energy minimization principle of the system, equilibrium composition of the reactions of chemical-looping gasification (CLG) of biomass with natural hematite (Fe2O3) as oxygen carrier were analyzed using commercial software of HSC Chemistry 5.1. The feasibility of the CLG of biomass with hematite was experimental verified in a lab-scale bubbling fluidized bed reactor using argon as fluidizing gas. It was indicated the experimental results were consistent with the theoretical analysis. The presence of oxygen carrier gave a significant effect on the biomass conversion and improved the synthesis gas yield obviously. It was observed that the gas content of CO and H2 was over 70% in CLG of biomass. The reduced hematite particles mainly existed in form of FeO. It was showed that the reduction of natural hematite with biomass proceeds in a stepwise manner from Fe2O3 →Fe3O4→ FeO. Reduction product of natural hematite can be restored the lattice oxygen by oxidation with air.展开更多
A largescale antenna system (LSAS) with digital beamforming is expected to significantly increase energy efficiency (EE) and spectral efficiency (SE) in a wireless communication system. However, there are many c...A largescale antenna system (LSAS) with digital beamforming is expected to significantly increase energy efficiency (EE) and spectral efficiency (SE) in a wireless communication system. However, there are many challenging issues related to calibration, energy consumption, and cost in implementing a digital beamforming structure in an LSAS. In a practical LSAS deployment, hybrid digitalanalog beamforming structures with active antennas can be used. In this paper, we investigate the optimal antenna configuration in an N × M beamforming structure, where N is the number of transceivers, M is the number of active antennas per transceiver, where analog beamforming is introduced for individual transceivers and digital beamforming is introduced across all N transceivers. We analyze the green point, which is the point of maximum EE on the EESE curve, and show that the logscale EE scales linearly with SE along a slope of lg2/N. We investigate the effect of M on EE for a given SE value in the case of fixed NM and independent N and M. In both cases, there is a unique optimal M that results in optimal EE. In the case of independent N and M, there is no optimal (N, M) combination for optimizing EE. The results of numerical simulations are provided, and these results support our analysis.展开更多
The most practical high-temperature proton exchange membranes(PEMs) are phosphoric acid(PA)-doped polymer electrolytes. However, due to the plasticizing effect of PA, it is a challenge to address the trade-off between...The most practical high-temperature proton exchange membranes(PEMs) are phosphoric acid(PA)-doped polymer electrolytes. However, due to the plasticizing effect of PA, it is a challenge to address the trade-off between the proton conductivity and the mechanical performance of these materials. Here,we report an effective strategy to fabricate robust high-temperature PEMs based on the in situ electrostatic crosslinking of polyoxometalates and polymers. A comb copolymer poly(ether-ether-ketone)-grafted-poly(2-ethyl-2-oxazoline)(PGE) with transformable side chains was synthesized and complexed with H_(3)PW_(12)O_(40)(PW) by electrostatic self-assembly, forming PGE/PW nanocomposite membranes with bicontinuous nanostructures. After a subsequent PA-treatment of these membranes, high-temperature PEMs of PGE/PW/PA ternary nanocomposites were obtained, in which the in situ electrostatic crosslinking effect between PW and PGE side chains was generated in the hydrophilic domains of the bicontinuous structures. The microphase separation structure and the electrostatic crosslinking feature endow the PGE/PW/PA membranes with excellent anhydrous proton conductive ability while retaining high mechanical performance. The membranes show a high proton conductivity of 42.5 m S/cm at 150 ℃ and a high tensile strength of 13 MPa. Our strategy can pave a new route based on electrostatic control to design nanostructured polymer electrolytes.展开更多
Doped BaCeO_3 is a kind of proton conductor which exhibits high electrical conductivities at relatively low operating temperatures.It has been used as the electrolyte materials for proton ceramic fuel cells,and the ef...Doped BaCeO_3 is a kind of proton conductor which exhibits high electrical conductivities at relatively low operating temperatures.It has been used as the electrolyte materials for proton ceramic fuel cells,and the effects of dopants on the sinter-ability and electrical performance are critical factors.展开更多
Doped La_2NiO_4 are promising cathode materials for solid oxide fuel cells(SOFCs)which are environment friendly energy conversion devices.In this work,the synthesis of Sr,Fe and Cu doped La_2NiO_4 and the effects of d...Doped La_2NiO_4 are promising cathode materials for solid oxide fuel cells(SOFCs)which are environment friendly energy conversion devices.In this work,the synthesis of Sr,Fe and Cu doped La_2NiO_4 and the effects of dopants on phase formation during calcination and on展开更多
As a hydrocarbon-rich sedimentary basin in China,the Ordos Basin has enormous potential for shale gas resources.The shale of the Upper Carboniferous Benxi Formation is rich in organic matter,however,its palaeoenvironm...As a hydrocarbon-rich sedimentary basin in China,the Ordos Basin has enormous potential for shale gas resources.The shale of the Upper Carboniferous Benxi Formation is rich in organic matter,however,its palaeoenvironment and organic matter enrichment mode are yet to be revealed.In this study,the geochemical characteristics of the shale of the Benxi Formation in the east-central part of the Ordos Basin were analyzed to investigate its palaeoenvironment.At the same time,the organic matter enrichment modes in different sedimentary facies were compared and analyzed.The results indicate that:1)the shale of the Benxi Formation was mainly deposited on the continental margin and strong terrestrial clastic input;2)the deposition period of the Benxi Formation shale had a hot and humid climate with high palaeoproductivity and local volcanic hydrothermal fluid,and a high sedimentation rate with the strong stagnant environment.The bottom water was in dysoxic conditions and a semi-saline deposition environment;3)multiple factors,such as palaeoproductivity,volcanic hydrothermal,redox conditions,and palaeosalinity interact to influence the enrichment of shale organic matter in Benxi Formation;4)the organic matter enrichment modes of continental,marine-continental transitional,and marine shales can be classified into three types:“production mode”,“hybrid mode of preservation and production”,and“preservation mode”,respectively.This study provides a reference for the organic matter enrichment mode,shale gas formation conditions,and core area evaluation in these marine-continental transitional shales,and also offers new guidance for exploration ideas for shale gas in different sedimentary facies.展开更多
基金supported by National Natural Science Foundation of China(61104085,51505213)Natural Science Foundation of Jiangsu Province(BK20151463,BK20130744)+2 种基金Innovation Foundation of NJIT(CKJA201409,CKJB201209)sponsored by Jiangsu Qing Lan ProjectJiangsu Government Scholarship for Overseas Studies(JS-2012-051)
基金the financial support by the National Natural Science Foundation of China(51406214 and51406208)supported by the Natural science Foundation of Guangdong Province(2015A030313719)the Science&Technology Research Project of Guangdong Province(2013B050800008)
文摘Chemical looping dry reforming(CLDR) is an innovative technology for CO2 utilization using the chemical looping principle.The CLDR process consists of three stages,i.e.CH4 reduction,CO2 reforming,and air oxidation.Spinel nickel ferrite(NiFe2O4) was prepared and its multi-cycle performance as an oxygen carrier for CLDR was experimentally investigated.X-ray diffraction(XRD) and Laser Raman spectroscopy showed that a pure spinel crystalline phase(NiFe2O4) was obtained by a parallel flow co-precipitating method.NiFe2O4was reduced into Fe-Ni alloy and wustite(FexO) during the CH4 reduction process.Subsequent oxidation of the reduced oxygen carrier was performed with CO2 as an oxidant to form an intermediate state:a mixture of spinel Ni(1-x)Fe(2+x)O4,Fe(2+y)O4 and metallic Ni.And CO was generated in parallel during this stage.Approximate 185 mL of CO was generated for 1 g spinel NiFe2O4 in a single cycle.The intermediate oxygen carrier was fully oxidized in the air oxidation stage to form a mixture of Ni(1+x)Fe(2-x)O4 and Fe2O3.Although the original state of oxygen carrier(NiFe2O4) was not fully regenerated and agglomeration was observed,a good recyclability was shown in 10 successive redox cycles.
文摘With the development of arsenic removal technologies, biological method and sulfide method have been applied in industrial fields, other methods have also been applied in arsenic-containing copper flotation, including coagulation process, ion exchange method, direct precipitation method and so on. In the paper, a short review on the progress of arsenic removal technologies of copper flotation during the last decade is presented, and the importance and the trend of arsenic removal are discussed. The existing and possible strategies of improving copper recovery in porphyry copper ores and rejection of penalty elements such as Tennantite and Enargite in copper flotation concentrates are also presented.
基金the National Natural Science Foundation of China under Grant 61103115the National Natural Science Foundation of China under Grant 61103172+2 种基金the National Natural Science Youth Foundation of China under Grant 61602175the special fund for Software and Integrated Circuit Industry Development of Shanghai under Grant 150809the“Action Plan for Innovation on Science and Technology”Projects of Shanghai(project No:16511101000)。
文摘Air pollution which is detrimental to people’s health is a wide spread problem across many countries around the world.Developing better air quality prediction approaches is an important research issue.Existing methods often focus on the prediction of air pollution concentrations,which is not as intuitive to the public as the air quality levels.In this paper,near future fine-grained air quality level prediction task is explored with a series of machine learning ensemble methods.Included ensemble methods are majority voting,averaging,weighted averaging and 16 different stacking tactics.To investigate the performances of these ensemble methods,comprehensive comparative experiments are conducted.Included contrast models are classical Autoregressive Integrated Moving Average(ARIMA),popular deep learning model Long Short-Term Memory(LSTM)neural network,and nine of the base-level models such as Support Vector Machine(SVM),Random Forest(RF),Logistic Regression(LR)and several boosting models.Datasets acquired from a coastal city Hong Kong and an inland city Beijing are used to train and validate all the models.Experiments show that performances of the ensemble methods outperform most of the individual models,especially when stacking with probability distributions together with engineered original features,which demonstrates the best performance.
文摘Located in Shangri-La county, Yunnan Province, China’s biggest underground nonferrous mine Pulang Copper Mine is under construction. To date, the defined copper reserves at the Pulang Copper Mine are 4.8 million tonnes of copper and an average grade of 0.34%. The mineralized zone is 2300 m long, 600 - 800 m wide, and 1000 m high in a dome shape. The first-stage mining and processing capacity is 12.5 million tonnes of ore per year. By geotechnical investigation, ore haulage is adopted via a drift and ore pass development system. From mineralogical analysis, a majority of the Pulang copper ore body is classified as a type III rock, which is generally considered to be suitable for block-caving methods. As an update to the traditional mine-to-mill approach, a cave-to-mill integrated production concept is then introduced. This is essentially the integration of underground mine production scheduling and monitoring with surface mineral processing management based on fragment size and geometallurgical ore characteristics. Several unique challenges experienced during the project design and construction, as well as a number of features aimed at mitigating these problems, are also discussed in this paper.
基金Supported by Project of Jilin Province Science and Technology Commission(20080218)
文摘[ Objective ] This study aimed to establish a rapid and effective quarantine method of Koi herpes virus. [ Method] Primers and corresponding TaqMan probe were designed based on the conserved sequence of Koi herpes virus (KHV) pol-ymerase gene (Sph) to establish a rapid and effective fluorescence quantitative PCR method for Koi herpes virus detection. The cell cultures were detected by using the established fluorescence quantitative PCR assay, and the results were com- pared with that of conventional PCR. [ Result] The sensitivity of fluorescence quantitative PCR was higher than that of conventional PCR. The minimum copy num- ber that could be detected was 1.6 - 102 copies/p.1. The established method was adopted for sample detection, and a reliable diagnostic result could be obtained within 4 h. [Conclusion] The established method is rapid, sensitive, specific and repeatable, which is conducive to the rapid detection of Koi herpes virus. Key words Koi herpes virus; Fluorescence quantitative PCR; Detection
文摘The co-pressing and co-firing processes are often used to prepare the anode-electrolyte half cells for solid oxide fuel cells(SOFCs).To get a half cell without cracks,the sintering behavior of electrolyte and anode layers must be controlled carefully.In this work,the sintering behavior
文摘Mixed conductors of oxygen ion and electron are important materials.They have been used as oxygen permeation membranes or electrodes of fuel cells.Doped LaGaO_3 and La_2Ni O_4 are both mixed conductors,but they have different crystal structures which will result in different
文摘Preparation for Glycine-Mg/Al-Layered dou-ble hydroxide(LDH-G)/PVA nanocompositeswas carried out via exfoliation-adsorption routebased on exfoliation of LDH-G in formamide.Theeffect of ultrasonic treatment on the fabrication ofLDH-G/PVA nanocomposites was investigated,and the thermal stability of PVA containing the na-no-scale dispersed LDH-G was analyzed.The re-sults of XRD suggest that chains of PVA with
基金National Basic Research Program of China(No.2012CB215404,2012CB215406)the National Natural Science Foundation of China(No.51261120378)for financial support of this work.
文摘The authors proposed an integrated gasification fuel cell zero-emission system.The coal char gasification is discussed using high temperature and concentration of CO_(2) produced by solid oxide fuel cells and oxy-fuel combustion.The gasification is simulated by Aspen plus based on Gibbs free energy minimization method.Gasification model of pulverized coal char is computed and analyzed.Effects of gas flow rate,pressure,preheating temperature,heat losses on syngas composition,reaction temperature,lower heating value and carbon conversion are studied.Results and parameters are determined as following.The optimum O_(2) flow rate is 20 kg/h.The reaction temperature decreases from 1645 to 1329℃when the CO_(2)flow rate increases from 0 to 5 kg/h,the CO_(2) flow rate should be operated reasonably;lower heating value reduces and reaction temperature increases as the pressure increases;compared to the CO_(2) preheating,O_(2) preheating has greater influence on reaction temperature and lower heating value.
基金The financial support of the National Natural Science Foundation of China(51406208,51406214)supported by the Science&Technology Research Project of Guangdong Province(2015A010106009)the support of Key Laboratory of Renewable Energy,Chinese Academy of Sciences(Y607j51001)
文摘Double-perovskite type oxide LaSrFeCoO(LSFCO) was used as oxygen carrier for chemical looping steam methane reforming(CL-SMR) due to its unique structure and reactivity. Two different oxidation routes,steam-oxidation and steam-air-stepwise-oxidation, were applied to investigate the recovery behaviors of the lattice oxygen in the oxygen carrier. The characterizations of the oxide were determined by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), hydrogen temperature-programmed reduction(H-TPR) and scanning electron microscopy(SEM). The fresh sample LSFCO exhibits a monocrystalline perovskite structure with cubic symmetry and high crystallinity, except for a little impurity phase due to the antisite defect of Fe/Co disorder. The deconvolution distribution of XPS patterns indicated that Co,and Fe are predominantly in an oxidized state(Feand Fe) and(Coand Co), while O 1s exists at three species of lattice oxygen, chemisorbed oxygen and physical adsorbed oxygen. The double perovskite structure and chemical composition recover to the original state after the steam and air oxidation, while the Co ion cannot incorporate into the double perovskite structure and thus form the CoO just via individual steam oxidation. In comparison to the two different oxidation routes, the sample obtained by steam-oxidation exhibits even higher CHconversion, CO and Hselectivity and stronger hydrogen generation capacity.
文摘Thermodynamic parameters of chemical reactions in the system were carried out through thermodynamic analysis. According to the Gibbs free energy minimization principle of the system, equilibrium composition of the reactions of chemical-looping gasification (CLG) of biomass with natural hematite (Fe2O3) as oxygen carrier were analyzed using commercial software of HSC Chemistry 5.1. The feasibility of the CLG of biomass with hematite was experimental verified in a lab-scale bubbling fluidized bed reactor using argon as fluidizing gas. It was indicated the experimental results were consistent with the theoretical analysis. The presence of oxygen carrier gave a significant effect on the biomass conversion and improved the synthesis gas yield obviously. It was observed that the gas content of CO and H2 was over 70% in CLG of biomass. The reduced hematite particles mainly existed in form of FeO. It was showed that the reduction of natural hematite with biomass proceeds in a stepwise manner from Fe2O3 →Fe3O4→ FeO. Reduction product of natural hematite can be restored the lattice oxygen by oxidation with air.
文摘A largescale antenna system (LSAS) with digital beamforming is expected to significantly increase energy efficiency (EE) and spectral efficiency (SE) in a wireless communication system. However, there are many challenging issues related to calibration, energy consumption, and cost in implementing a digital beamforming structure in an LSAS. In a practical LSAS deployment, hybrid digitalanalog beamforming structures with active antennas can be used. In this paper, we investigate the optimal antenna configuration in an N × M beamforming structure, where N is the number of transceivers, M is the number of active antennas per transceiver, where analog beamforming is introduced for individual transceivers and digital beamforming is introduced across all N transceivers. We analyze the green point, which is the point of maximum EE on the EESE curve, and show that the logscale EE scales linearly with SE along a slope of lg2/N. We investigate the effect of M on EE for a given SE value in the case of fixed NM and independent N and M. In both cases, there is a unique optimal M that results in optimal EE. In the case of independent N and M, there is no optimal (N, M) combination for optimizing EE. The results of numerical simulations are provided, and these results support our analysis.
基金financial support from the National Natural Science Foundation of China (No. 22075097)the Program for JLU Science and Technology Innovative Research Team (No. 2017TD-10)the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (No. 2020–09)。
文摘The most practical high-temperature proton exchange membranes(PEMs) are phosphoric acid(PA)-doped polymer electrolytes. However, due to the plasticizing effect of PA, it is a challenge to address the trade-off between the proton conductivity and the mechanical performance of these materials. Here,we report an effective strategy to fabricate robust high-temperature PEMs based on the in situ electrostatic crosslinking of polyoxometalates and polymers. A comb copolymer poly(ether-ether-ketone)-grafted-poly(2-ethyl-2-oxazoline)(PGE) with transformable side chains was synthesized and complexed with H_(3)PW_(12)O_(40)(PW) by electrostatic self-assembly, forming PGE/PW nanocomposite membranes with bicontinuous nanostructures. After a subsequent PA-treatment of these membranes, high-temperature PEMs of PGE/PW/PA ternary nanocomposites were obtained, in which the in situ electrostatic crosslinking effect between PW and PGE side chains was generated in the hydrophilic domains of the bicontinuous structures. The microphase separation structure and the electrostatic crosslinking feature endow the PGE/PW/PA membranes with excellent anhydrous proton conductive ability while retaining high mechanical performance. The membranes show a high proton conductivity of 42.5 m S/cm at 150 ℃ and a high tensile strength of 13 MPa. Our strategy can pave a new route based on electrostatic control to design nanostructured polymer electrolytes.
文摘Doped BaCeO_3 is a kind of proton conductor which exhibits high electrical conductivities at relatively low operating temperatures.It has been used as the electrolyte materials for proton ceramic fuel cells,and the effects of dopants on the sinter-ability and electrical performance are critical factors.
文摘Doped La_2NiO_4 are promising cathode materials for solid oxide fuel cells(SOFCs)which are environment friendly energy conversion devices.In this work,the synthesis of Sr,Fe and Cu doped La_2NiO_4 and the effects of dopants on phase formation during calcination and on
基金supported from the Natural Science Basic Research Program of Shaanxi Province(No.2020JQ-744)China Postdoctoral Science Foundation(No.2020M673443)+2 种基金Shaanxi Provincial Education Department general special project(No.21JK0775)Opening Project of Key Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Natural Resources(No.KF2021-7)National Natural Science Foundation of China(Grant No.4210021463).
文摘As a hydrocarbon-rich sedimentary basin in China,the Ordos Basin has enormous potential for shale gas resources.The shale of the Upper Carboniferous Benxi Formation is rich in organic matter,however,its palaeoenvironment and organic matter enrichment mode are yet to be revealed.In this study,the geochemical characteristics of the shale of the Benxi Formation in the east-central part of the Ordos Basin were analyzed to investigate its palaeoenvironment.At the same time,the organic matter enrichment modes in different sedimentary facies were compared and analyzed.The results indicate that:1)the shale of the Benxi Formation was mainly deposited on the continental margin and strong terrestrial clastic input;2)the deposition period of the Benxi Formation shale had a hot and humid climate with high palaeoproductivity and local volcanic hydrothermal fluid,and a high sedimentation rate with the strong stagnant environment.The bottom water was in dysoxic conditions and a semi-saline deposition environment;3)multiple factors,such as palaeoproductivity,volcanic hydrothermal,redox conditions,and palaeosalinity interact to influence the enrichment of shale organic matter in Benxi Formation;4)the organic matter enrichment modes of continental,marine-continental transitional,and marine shales can be classified into three types:“production mode”,“hybrid mode of preservation and production”,and“preservation mode”,respectively.This study provides a reference for the organic matter enrichment mode,shale gas formation conditions,and core area evaluation in these marine-continental transitional shales,and also offers new guidance for exploration ideas for shale gas in different sedimentary facies.