About 45%of tungsten,~20%of tin,and~9%of fluorite of known world reserves are associated with Late Mesozoic igneous rocks,Southeast(SE)China.Here we demonstrate that Fogang granite,the largest inland batholith,is main...About 45%of tungsten,~20%of tin,and~9%of fluorite of known world reserves are associated with Late Mesozoic igneous rocks,Southeast(SE)China.Here we demonstrate that Fogang granite,the largest inland batholith,is mainly of A2-type that is commonly found in post-orogenic settings and experienced plate subduction induced metasomatism.In contrast,the Yajishan syenite and Nankunshan granite intruding the Fogang granite~20 Ma later are of A1-type formed in intraplate settings.We found that F-rich fluid fractionation,which could make the decline of Ga/Al ratio,total(Nb+Y+Ce+Zr)and Zr concentrations,Nb/Ta and Zr/Hf ratios,leads to chemical variations of a few Fogang granites changing from A2-type to highly fractionated or I-and S-type granitoids.Crystal and Frich fluid fractionations,as well as crustal contamination most likely derived from the Fogang granite,result in some Nankunshan granites developing from A1-type into A2-type.These late-or post-magmatic processes should be taken into account carefully when discriminating the petrogenetic types of igneous rocks,especially for the A2-type suites.Combining with the distribution of 180-140 Ma A1-and A2-type igneous rocks,rare metal deposits,and fluorite deposits in SE China,we highlight the significant role of slab-released F-rich fluids in formation of A-type suites and subsequent chemical differentiation and rare metal and fluorine mineralization.A model of flat-slab northeastward rollback is thus proposed,in which the subduction front reached somewhere near Fogang and then started to roll back at~165 Ma.The inland Jurassic granites of SE China represent a unique locality for formation of A-type suites and their associated mineralization.These granites are not anorogenic,but they are the result of slab rollback from a flat slab,founding of that slab at shallow levels,and metasomatism of by F-rich fluids related to slab heating by the asthenosphere.展开更多
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(No.2019B030302013)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB42000000)+1 种基金the National Natural Science Foundation of China(No.41773054)the National Key R&D Program of China(No.2016YFC0600408)。
文摘About 45%of tungsten,~20%of tin,and~9%of fluorite of known world reserves are associated with Late Mesozoic igneous rocks,Southeast(SE)China.Here we demonstrate that Fogang granite,the largest inland batholith,is mainly of A2-type that is commonly found in post-orogenic settings and experienced plate subduction induced metasomatism.In contrast,the Yajishan syenite and Nankunshan granite intruding the Fogang granite~20 Ma later are of A1-type formed in intraplate settings.We found that F-rich fluid fractionation,which could make the decline of Ga/Al ratio,total(Nb+Y+Ce+Zr)and Zr concentrations,Nb/Ta and Zr/Hf ratios,leads to chemical variations of a few Fogang granites changing from A2-type to highly fractionated or I-and S-type granitoids.Crystal and Frich fluid fractionations,as well as crustal contamination most likely derived from the Fogang granite,result in some Nankunshan granites developing from A1-type into A2-type.These late-or post-magmatic processes should be taken into account carefully when discriminating the petrogenetic types of igneous rocks,especially for the A2-type suites.Combining with the distribution of 180-140 Ma A1-and A2-type igneous rocks,rare metal deposits,and fluorite deposits in SE China,we highlight the significant role of slab-released F-rich fluids in formation of A-type suites and subsequent chemical differentiation and rare metal and fluorine mineralization.A model of flat-slab northeastward rollback is thus proposed,in which the subduction front reached somewhere near Fogang and then started to roll back at~165 Ma.The inland Jurassic granites of SE China represent a unique locality for formation of A-type suites and their associated mineralization.These granites are not anorogenic,but they are the result of slab rollback from a flat slab,founding of that slab at shallow levels,and metasomatism of by F-rich fluids related to slab heating by the asthenosphere.