期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Local coordination and electronic interactions of Pd/MXene via dual‐atom codoping with superior durability for efficient electrocatalytic ethanol oxidation
1
作者 Zhangxin Chen Fan Jing +7 位作者 Minghui Luo Xiaohui Wu haichang fu Shengwei Xiao Binbin Yu Dan Chen Xianqiang Xiong Yanxian Jin 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期166-177,共12页
Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promisin... Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promising approach for the rational design of catalysts involving heteroatoms as anchors for Pd nanoparticles for ethanol oxidation reaction(EOR)catalysis.The doped B and N atoms from dimethylamine borane(DB)occupy the position of the Ti_(3)C_(2)lattice to anchor the supported Pd nanoparticles.The electrons transfer from the support to B atoms,and then to the metal Pd to form a stable electronic center.A strong electronic interaction can be produced and the d‐band center can be shifted down,driving Pd into the dominant metallic state and making Pd nanoparticles deposit uniformly on the support.As‐obtained Pd/DB–Ti_(3)C_(2)exhibits superior durability to its counterpart(∼14.6%retention)with 91.1%retention after 2000 cycles,placing it among the top single metal anodic catalysts.Further,in situ Raman and density functional theory computations confirm that Pd/DB–Ti_(3)C_(2)is capable of dehydrogenating ethanol at low reaction energies. 展开更多
关键词 DURABILITY electronic interactions ethanol oxidation heteroatom codoping Pd/MXene
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部