期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Improving superficial microstructure and properties of the laser-processed ultrathin kerf in Ti-6Al-4V alloy by water-jet guiding 被引量:1
1
作者 Yang Chao Yuezhuan Liu +10 位作者 Zifa Xu Weixin Xie Li Zhang Wentai Ouyang haichen wu Zebin Pan Junke Jiao Shujun Li Guangyi Zhang Wenwu Zhang Liyuan Sheng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第25期32-53,共22页
In the present research,the gas-assisted laser(GAL)and water-jet guided laser(WGL)processing technologies were applied to machine the ultrathin kerf in the wrought Ti-6Al-4V alloy.The microstructure,microhardness,and ... In the present research,the gas-assisted laser(GAL)and water-jet guided laser(WGL)processing technologies were applied to machine the ultrathin kerf in the wrought Ti-6Al-4V alloy.The microstructure,microhardness,and wear properties of the superficial layer were investigated.The results reveal that the GAL processing could machine the kerf with a high depth-to-width ratio of 12–15,but the increased processing times enhance the depth little.Due to the oxygen entrainment and relatively low heat and mass transferring efficiency,the assisted gas promotes the formation of a scaled recast layer containingβ-Ti phase and oxides,which increases the roughness to 20μm.The WGL processed kerf has a low depth-to-width ratio with a value of 1.9–2.5 and the depth could be increased by increasing the WGL processing times.With the assistance of the water jet,the remelted debris and heat could be eliminated immediately,which restrains the formation of the recast layer and heat-affected zone.The ultrathin oxide outer layer with hundreds of nanometers and ultrafineα-Ti grain inner layer are formed on the surface,which decreases the roughness to 12μm.Compared with the as-received Ti-6Al-4V alloy,the microhardness of GAL processed kerf surface is increased to 382.8 HV accompanied by residual tensile stress,while the microhardness of WGL processed kerf surface is increased to 481.6 HV accompanying with residual compressive stress.In addition,the GAL processing increases the wear rate at room temperature but decreases the wear rate at high temperatures.Comparatively,the WGL processing decreases the wear rate at room and high temperatures,simultaneously.Such wear behaviors could be ascribed to their different superficial microstructures and phase constituents. 展开更多
关键词 Ti-6Al-4V alloy Water-jet guided laser processing Superficial layer Microstructure Wear properties
原文传递
Development of the high-strength ductile ferritic alloys via regulating the intragranular and grain boundary precipitation of G-phase
2
作者 Mujin Yang Chao Huang +11 位作者 Jiajia Han haichen wu Yilu Zhao Tao Yang Shenbao Jin Chenglei Wang Zhou Li Ruiying Shu Cuiping Wang Huanming Lu Gang Sha Xingjun Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第5期180-199,共20页
A typical G-phase strengthened ferritic model alloy(1Ti:Fe-20Cr-3Ni-1Ti-3Si,wt.%)has been carefully studied using both advanced experimental(EBSD,TEM and APT)and theoretical(DFT)techniques.During the classic“solid so... A typical G-phase strengthened ferritic model alloy(1Ti:Fe-20Cr-3Ni-1Ti-3Si,wt.%)has been carefully studied using both advanced experimental(EBSD,TEM and APT)and theoretical(DFT)techniques.During the classic“solid solution and aging”process,the superfine(Fe,Ni)_(2)TiSi-L2_(1)particles densely precipitate within the ferritic grain and subsequently transform into the(Ni,Fe)_(16)Ti_(6)Si_(7)-G phase.In the meanwhile,the elemental segregation at grain boundaries and the resulting precipitation of a large amount of the(Ni,Fe)_(16)Ti_(6)Si_(7)-G phase are also observed.These nanoscale microstructural evolutions result in a remarkable increase in hardness(100-300 HV)and severe embrittlement.When the“cold rolling and aging”process is used,the brittle fracture is effectively suppressed without loss of nano-precipitation strengthening ef-fect.Superhigh yield strength of 1700 MPa with 4%elongation at break is achieved.This key improvement in mechanical properties is mainly attributed to the pre-cold rolling process which effectively avoids the dense precipitation of the G-phase at the grain boundary.These findings could shed light on the further exploration of the precipitation site via optimal processing strategies. 展开更多
关键词 G-phase Precipitation strengthening Grain boundary segregation Nano-precipitates
原文传递
Twinning,phase boundary structure and development of high coercivity in Fe-rich Sm_(2)Co_(17)-type magnets 被引量:2
3
作者 haichen wu Zhuang Liu +7 位作者 Chaoyue Zhang Qiqi Yang Huanming Lu Guoxin Chen Xinming Wang Yong Li Renjie Chen Aru Yan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第1期102-111,共10页
The microstructure of twinning as well as the phase boundary between 1:5 H and 2:17 R phase in Fe-rich Sm_(2)Co_(17)-type magnets was characterized at atomic scale using nanobeam diffraction and highresolution STEM-HA... The microstructure of twinning as well as the phase boundary between 1:5 H and 2:17 R phase in Fe-rich Sm_(2)Co_(17)-type magnets was characterized at atomic scale using nanobeam diffraction and highresolution STEM-HAADF imaging,and the reason for the dramatic increase of coercivity during slow cooling was investigated based on the microchemistry analysis.The twinning relationship in the 2:17 R phase originates from ordered substitution of Sm atoms by Co-Co atomic pairs on every three(3033)and(3033)planes,leading to formation of two corresponding equivalent twin variants.The basal plane of the 2:17 R phase,the 1:3 R platelet phase across the 2:17 R cell and the 1:5 H cell boundary phase between two adjacent 2:17 R cells all can act as effective twin boundary.The cell boundary phase is precipitated along the pyramidal habit plane,and a fully coherent phase boundary(PB)is formed between the 1:5 H and 2:17 R phases with the orientation relationship to be PB//(1121)1:5 H//(1011)_(2):17 R.The phase boundary may either be parallel to or intersect with the pyramidal planes occupied by Co-Co atomic pairs.The substantial increase of coercivity during slow cooling is ascribed to the development of large gradient of the elements concentration within the cell boundary phase,resulting in large gradient of domain wall energy,and thus the pinning strength of the cell boundary phase against magnetic domain wall motion is significantly enhanced. 展开更多
关键词 Sm_(2)Co_(17)-type magnets Microstructure TWINNING Phase boundary COERCIVITY Rare earths
原文传递
Effects of Pr-Cu-Ti intergranular addition on microstructure and magnetic properties of heavy-rare-earth-free Nd-Fe-B sintered magnets
4
作者 Jinhao Zhu Guangfei Ding +6 位作者 Bo Zheng haichen wu Lei Jin Zhehuan Jin Shuai Guo Renjie Chen Aru Yan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第5期778-783,I0004,共7页
By intergranular addition of Pr-Cu-Ti alloy powders in the Nd-Fe-B sintered magnets with the normal B component,we propose an approach to the optimization of grain boundary and local Nd-Fe-B composition system.The coe... By intergranular addition of Pr-Cu-Ti alloy powders in the Nd-Fe-B sintered magnets with the normal B component,we propose an approach to the optimization of grain boundary and local Nd-Fe-B composition system.The coercivity is enhanced from 1.42 to 1.86 T,while further addition leads to a reduction in remanence and coercivity.The analyses of phase composition reveal that Ti mainly exists in the form of metallic Ti alloy,and part of Ti combines with B to form the TiB2 phase after the liquid phase sintering process.This process results in a consumption of B in the local Nd-Fe-B composition system and a change of the grain boundary component,which contributes to the formation process of the RE_(6)(Fe,M)_(14) phase after the annealing process.Therefore,with the modification of grain boundary and composition system,the intergranular addition of Pr-Cu-Ti induces the generation of continuous thin grain boundary phases.It promotes the intergrain exchange decoupling,increasing the coercivity in the annealed magnet.While the excess addition results in the segregation of TiB_(2),as well as the precipitation of TiB_(2) into the Nd-Fe-B phase,which leads to structural defects.Thus,the further effort for the addition alloy with Ti to reduce the deterioration of the microstructure will lead to further improvement in magnetic properties. 展开更多
关键词 Nd-Fe-B sintered magnet Magnetic properties Grain boundary Microstructures Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部