Laser 3D printing based on melt growth has great potential in rapid preparation of Al_(2)O_(3)-based eutectic ce ramics.In this work,la rge-scale Al_(2)O_(3)/GdAlO_(3)/ZrO_(2)ternary eutectic ceramic rod with diameter...Laser 3D printing based on melt growth has great potential in rapid preparation of Al_(2)O_(3)-based eutectic ce ramics.In this work,la rge-scale Al_(2)O_(3)/GdAlO_(3)/ZrO_(2)ternary eutectic ceramic rod with diameter of 4-5 mm and height higher than 250 mm was additively manufactured by laser directed energy deposition.Especially,heat treatment was applied to eliminate the microstructure heterogeneity in the as-deposited eutectic ceramic,and the microstructure homogenization mechanism was studied in depth.The results indicate that colonies and banded structures completely disappear after the heat treatment,producing a homogeneous network eutectic structure.The microstructure homogenization is revealed to experience three stages of discontinuous coarsening,continuous coarsening and microstructure coalescence.Additionally,it is found that the eutectic spacing linearly increases with the heat treatment time,meaning that the coarsening behavior of the laser 3D-printed Al_(2)O_(3)/GdAlO_(3)/ZrO_(2)eutectic ceramic satisfies well with the Graham-Kraft model.展开更多
Paulownias are among the fastest growing trees in the world,but they often suffer tremendous loss of wood production due to infection by Paulownia witches'broom(PaWB)phytoplasmas.In this study,we have sequenced an...Paulownias are among the fastest growing trees in the world,but they often suffer tremendous loss of wood production due to infection by Paulownia witches'broom(PaWB)phytoplasmas.In this study,we have sequenced and assembled a high-quality nuclear genome of Paulownia fortunei,a commonly cultivated paulownia species.The assembled genome of P.fortunei is 511.6 Mb in size,with 93.2%of its sequences anchored to 20 pseudo-chromosomes,and it contains 31985 protein-coding genes.Phylogenomic analyses show that the family Paulowniaceae is sister to a clade composed of Phrymaceae and Orobanchaceae.Higher photosynthetic efficiency is achieved by integrating C3 photosynthesis and the crassulacean acid metabolism pathway,which may contribute to the extremely fast growth habit of paulownia trees.Comparative transcriptome analyses reveal modules related to cambial growth and development,photosynthesis,and defense responses.Additional genome sequencing of PaWB phytoplasma,combined with functional analyses,indicates that the effector PaWB-SAP54 interacts directly with Paulownia PfSPLa,which in turn causes the degradation of PfSPLa by the ubiquitin-mediated pathway and leads to the formation of witches'broom.Taken together,these results provide significant insights into the biology of paulownias and the regulatory mechanism for the formation of PaWB.展开更多
Ceramic cores with complex structures and optimized properties are critical for hollow turbine blades applied in aeroengines.Compared to traditional methods,additive manufacturing(AM)presents great advantages in formi...Ceramic cores with complex structures and optimized properties are critical for hollow turbine blades applied in aeroengines.Compared to traditional methods,additive manufacturing(AM)presents great advantages in forming complex ceramic cores,but how to balance the porosity and strength is an enormous challenge.In this work,alumina ceramic cores with high porosity,moderate strength,and low high-temperature deflection were prepared using stereolithography(SLA)3D printing by a novel powder gradation design strategy.The contradiction between porosity and flexural strength is well adjusted when the mass ratio of the coarse,medium,and fine particles is 2:1:1 and the sintering temperature is 1600℃.The fracture mode of coarse particles in sintered SLA 3D printing ceramic transforms from intergranular fracture to transgranular fracture with the increase of sintering temperature and the proportion of fine powders in powder system.The sintered porosity has a greater influence on the high-temperature deflection of SLA 3D printed ceramic cores than grain size.On this basis,a"non-skeleton"microstructure model of SLA 3D printed alumina ceramic cores is created to explain the relationship between the sintering process and properties.As a result,high porosity(36.4%),appropriate strength(50.1 MPa),and low high-temperature deflection(2.27 mm)were achieved by optimizing particle size gradation and sintering process,which provides an insight into the important enhancement of the comprehensive properties of SLA 3D printed ceramic cores.展开更多
Distribution control and formation mechanism of gas inclusions formed in directionally solidified Al2O3-Er3Al5O12-ZrO2 eutectic ceramic rods are explored during laser floating zone melting. In atmospheric environment,...Distribution control and formation mechanism of gas inclusions formed in directionally solidified Al2O3-Er3Al5O12-ZrO2 eutectic ceramic rods are explored during laser floating zone melting. In atmospheric environment, highly-dense bubble-free eutectic rods are well fabricated at low solidification rate(<25μm/s). Gas inclusions form intermittently when the solidification rate is in the range of 25-50 μm/s,but produce continuously at higher solidification rates(100-200 μm/s). The gas inclusions exhibit an elongated finger-like pattern along the growth direction, which of the maximum value of diameter first increases and then decreases with increasing the solidification rate. Meanwhile, the volume fraction of gas inclusions increased gradually with the solidification rate. Based on the effect of surface tension gradient, heterogeneous nucleation of gas bubbles is evaluated to be the primary formation mechanism of gas inclusions.展开更多
Intracellular pH plays a significant role in various biological processes, including cell proliferation,apoptosis, metabolism, enzyme activity and homeostasis. In this work, a novel design strategy for the preparation...Intracellular pH plays a significant role in various biological processes, including cell proliferation,apoptosis, metabolism, enzyme activity and homeostasis. In this work, a novel design strategy for the preparation of pH responsive carbon dots(CDs-pH) for ratiometric intracellular imaging was reported. By using SciFinder database, fluorescent CDs-pH with the required p Kavalue of 6.84 were rationally designed, which is vital important for precise sensing of intracellular pH. As a result, the synthesized CDspH demonstrated robust ability to test pH fluctuations within the physiological range of 5.4-7.4. The CDspH was further utilized for fluorescent ratiometric imaging of pH in living HeLa cells, effectively avoided the influence of autofluorescence from native cellular species. Moreover, real-time monitoring of intracellular pH fluctuation under heat shock was successfully realized. This SciFinder-guided design strategy is simple and flexible, which has a great potential to be used for the development of other types of CDs for various applications.展开更多
Laser three-dimensional(3D)printing has become a significant technique to fabricate high-performance Al_(2)O_(3)-based eutectic ceramics based on melt growth.However,oxygen vacancies are inevitable crystal defects dur...Laser three-dimensional(3D)printing has become a significant technique to fabricate high-performance Al_(2)O_(3)-based eutectic ceramics based on melt growth.However,oxygen vacancies are inevitable crystal defects during this process,and their formation mechanism and roles in the as-deposited ceramics are still unclear.In this paper,Al_(2)O_(3)/GdAlO_(3)/ZrO_(2) ternary eutectic ceramics were prepared by laser 3D printing,and the formation mechanism of the oxygen vacancies was revealed by conducting a well-designed annealing experiment.In addition,the effects of the oxygen vacancies on the structure and mechanical property of the as-solidified eutectic ceramic were investigated.The formation of oxygen vacancies is revealed to be a result of the transfer of oxygen atoms from the oxide ceramic to the oxygen-deficient atmosphere by means of vacancy migration mechanism.Besides,the presence of oxygen vacancies has no obvious effects on crystalline structure and microstructure of the additively manufactured eutectic ceramic.However,the chemical bond property changes to some extent due to the formation of these crystal defects,which may affect the mechanical property of the as-deposited eutectic ceramic.It is found that the hardness decreases by 3.9%,and the fracture toughness increases by 13.3%after removing the oxygen vacancies.The results may provide a potential strategy to regulate the mechanical property of the oxide ceramic materials.展开更多
基金financially supported by the National Key R&D Program of China(Nos.2018YFB1106600 and 2017YFB1103500)Science,Technology and Innovation Commission of Shenzhen Municipality(No.JCYJ20180306171121424)+4 种基金National Natural Science Foundation of China(Nos.51822405,51472200)Aeronautics Power Foundation(No.6141B09050337)Key R&D Program of Shaan Xi Province(No.2018ZDCXL-GY-09-04)Joint Research Funds of the Department of Science&Technology of Shaanxi Province and NPU(No.2020GXLH-Z-024)Research Fund of the State Key Laboratory of Solidification Processing(NPU)(No.2019QZ-02)。
文摘Laser 3D printing based on melt growth has great potential in rapid preparation of Al_(2)O_(3)-based eutectic ce ramics.In this work,la rge-scale Al_(2)O_(3)/GdAlO_(3)/ZrO_(2)ternary eutectic ceramic rod with diameter of 4-5 mm and height higher than 250 mm was additively manufactured by laser directed energy deposition.Especially,heat treatment was applied to eliminate the microstructure heterogeneity in the as-deposited eutectic ceramic,and the microstructure homogenization mechanism was studied in depth.The results indicate that colonies and banded structures completely disappear after the heat treatment,producing a homogeneous network eutectic structure.The microstructure homogenization is revealed to experience three stages of discontinuous coarsening,continuous coarsening and microstructure coalescence.Additionally,it is found that the eutectic spacing linearly increases with the heat treatment time,meaning that the coarsening behavior of the laser 3D-printed Al_(2)O_(3)/GdAlO_(3)/ZrO_(2)eutectic ceramic satisfies well with the Graham-Kraft model.
基金This study was funded by the Key Cultivation Subjects Fund of Henan Province(grant 2011[339])the Academic Scientist Fund for Zhongyuan Scholars of Henan Province(grant 2018[99]).
文摘Paulownias are among the fastest growing trees in the world,but they often suffer tremendous loss of wood production due to infection by Paulownia witches'broom(PaWB)phytoplasmas.In this study,we have sequenced and assembled a high-quality nuclear genome of Paulownia fortunei,a commonly cultivated paulownia species.The assembled genome of P.fortunei is 511.6 Mb in size,with 93.2%of its sequences anchored to 20 pseudo-chromosomes,and it contains 31985 protein-coding genes.Phylogenomic analyses show that the family Paulowniaceae is sister to a clade composed of Phrymaceae and Orobanchaceae.Higher photosynthetic efficiency is achieved by integrating C3 photosynthesis and the crassulacean acid metabolism pathway,which may contribute to the extremely fast growth habit of paulownia trees.Comparative transcriptome analyses reveal modules related to cambial growth and development,photosynthesis,and defense responses.Additional genome sequencing of PaWB phytoplasma,combined with functional analyses,indicates that the effector PaWB-SAP54 interacts directly with Paulownia PfSPLa,which in turn causes the degradation of PfSPLa by the ubiquitin-mediated pathway and leads to the formation of witches'broom.Taken together,these results provide significant insights into the biology of paulownias and the regulatory mechanism for the formation of PaWB.
基金financially supported by the National Natural Science Foundation of China(Nos.52130204,52174376,51822405)Guangdong Basic and Applied Basic Research Foundation(No.21201910250000848)+5 种基金Science and Technology Innovation Team Plan of Shaan Xi Province(No.2021TD-17)The Youth Innovation Team of Shaanxi UniversitiesJoint Research Funds of the Department of Science&Technology of Shaanxi Province and NPU(2020GXLH-Z-024)Key R&D Program of Shaan Xi Province(No.2019ZDLGY 04-04)Fundamental Research Funds for the Central Universities(No.D5000210902)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(Nos.CX2021056 and CX2021066),China。
文摘Ceramic cores with complex structures and optimized properties are critical for hollow turbine blades applied in aeroengines.Compared to traditional methods,additive manufacturing(AM)presents great advantages in forming complex ceramic cores,but how to balance the porosity and strength is an enormous challenge.In this work,alumina ceramic cores with high porosity,moderate strength,and low high-temperature deflection were prepared using stereolithography(SLA)3D printing by a novel powder gradation design strategy.The contradiction between porosity and flexural strength is well adjusted when the mass ratio of the coarse,medium,and fine particles is 2:1:1 and the sintering temperature is 1600℃.The fracture mode of coarse particles in sintered SLA 3D printing ceramic transforms from intergranular fracture to transgranular fracture with the increase of sintering temperature and the proportion of fine powders in powder system.The sintered porosity has a greater influence on the high-temperature deflection of SLA 3D printed ceramic cores than grain size.On this basis,a"non-skeleton"microstructure model of SLA 3D printed alumina ceramic cores is created to explain the relationship between the sintering process and properties.As a result,high porosity(36.4%),appropriate strength(50.1 MPa),and low high-temperature deflection(2.27 mm)were achieved by optimizing particle size gradation and sintering process,which provides an insight into the important enhancement of the comprehensive properties of SLA 3D printed ceramic cores.
基金supported financially by the Science, Technology and Innovation Commission of Shenzhen Municipality (No. JCYJ20180306171121424)the National Key R&D Program of China (Nos. 2018YFB1106600 and 2017YFB1103500)+5 种基金the National Natural Science Foundation of China (Nos. 51822405 and 51472200)the Aeronautics Power Foundation (No. 6141B09050337)the Research Fund of Equipment Development Department (No. 61409230402)the Key R&D Program of ShaanXi Province (No. 2018ZDCXL-GY-0904)the Innovation Fund of the Zhejiang Kechuang New Materials Research Institute (No. ZKN-18-P04)the Research Fund of the State Key Laboratory of Solidification Processing (NPU) (No. 2019QZ-02)。
文摘Distribution control and formation mechanism of gas inclusions formed in directionally solidified Al2O3-Er3Al5O12-ZrO2 eutectic ceramic rods are explored during laser floating zone melting. In atmospheric environment, highly-dense bubble-free eutectic rods are well fabricated at low solidification rate(<25μm/s). Gas inclusions form intermittently when the solidification rate is in the range of 25-50 μm/s,but produce continuously at higher solidification rates(100-200 μm/s). The gas inclusions exhibit an elongated finger-like pattern along the growth direction, which of the maximum value of diameter first increases and then decreases with increasing the solidification rate. Meanwhile, the volume fraction of gas inclusions increased gradually with the solidification rate. Based on the effect of surface tension gradient, heterogeneous nucleation of gas bubbles is evaluated to be the primary formation mechanism of gas inclusions.
基金financial support from the National Natural Science Foundation of China (No. 21205108)the Foundation for University Key Teacher by Henan Province (No. 2017GGJS007)+1 种基金China Postdoctoral Science Foundation (Nos. 2017M620302, 2018T110736)the Key Scientific Research Project in Universities of Henan Province (No. 19A150048)
文摘Intracellular pH plays a significant role in various biological processes, including cell proliferation,apoptosis, metabolism, enzyme activity and homeostasis. In this work, a novel design strategy for the preparation of pH responsive carbon dots(CDs-pH) for ratiometric intracellular imaging was reported. By using SciFinder database, fluorescent CDs-pH with the required p Kavalue of 6.84 were rationally designed, which is vital important for precise sensing of intracellular pH. As a result, the synthesized CDspH demonstrated robust ability to test pH fluctuations within the physiological range of 5.4-7.4. The CDspH was further utilized for fluorescent ratiometric imaging of pH in living HeLa cells, effectively avoided the influence of autofluorescence from native cellular species. Moreover, real-time monitoring of intracellular pH fluctuation under heat shock was successfully realized. This SciFinder-guided design strategy is simple and flexible, which has a great potential to be used for the development of other types of CDs for various applications.
基金financially supported by the National Natural Science Foundation of China(52130204,52174376,and 51822405)Guangdong Basic and Applied Basic Research Foundation(2021B1515120028)+4 种基金Science and Technology Innovation Team Plan of Shaanxi Province(2021TD-17)The Youth Innovation Team of Shaanxi Universities,Key R&D Program of Shaanxi Province(2019ZDLGY04-04)Joint Research Funds of the Department of Science&Technology of Shaanxi Province and NWPU(2020GXLH-Z-024)Fundamental Research Funds for the Central Universities(D5000210902)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2021056,CX2021066,and CX2022033).
文摘Laser three-dimensional(3D)printing has become a significant technique to fabricate high-performance Al_(2)O_(3)-based eutectic ceramics based on melt growth.However,oxygen vacancies are inevitable crystal defects during this process,and their formation mechanism and roles in the as-deposited ceramics are still unclear.In this paper,Al_(2)O_(3)/GdAlO_(3)/ZrO_(2) ternary eutectic ceramics were prepared by laser 3D printing,and the formation mechanism of the oxygen vacancies was revealed by conducting a well-designed annealing experiment.In addition,the effects of the oxygen vacancies on the structure and mechanical property of the as-solidified eutectic ceramic were investigated.The formation of oxygen vacancies is revealed to be a result of the transfer of oxygen atoms from the oxide ceramic to the oxygen-deficient atmosphere by means of vacancy migration mechanism.Besides,the presence of oxygen vacancies has no obvious effects on crystalline structure and microstructure of the additively manufactured eutectic ceramic.However,the chemical bond property changes to some extent due to the formation of these crystal defects,which may affect the mechanical property of the as-deposited eutectic ceramic.It is found that the hardness decreases by 3.9%,and the fracture toughness increases by 13.3%after removing the oxygen vacancies.The results may provide a potential strategy to regulate the mechanical property of the oxide ceramic materials.