The utilization of single atoms(SAs)as trifunctional electrocatalyst for nitro-gen reduction,oxygen reduction,and oxygen evolution reactions(NRR,ORR,and OER)is still a formidable challenge.Herein,we devise one-pot syn...The utilization of single atoms(SAs)as trifunctional electrocatalyst for nitro-gen reduction,oxygen reduction,and oxygen evolution reactions(NRR,ORR,and OER)is still a formidable challenge.Herein,we devise one-pot synthesized palladium SAs stabilized on nitrogen-doped carbon palladium SA electrocat-alyst(Pd-SA/NC)as efficient trifunctional electrocatalyst for NRR,ORR,and OER.Pd-SA/NC performs a robust catalytic activity toward NRR with faradaic efficiency of 22.5%at-0.25 V versus reversible hydrogen electrode(RHE),and the relative Pd utilization efficiency is enhanced by 17-fold than Pd-NP/NC.In addition,the half-wave potential reaches 0.876 V versus RHE,amounting to a 58-time higher mass activity than commercial Pt/C.Moreover,the overpotential at 10 mA cm-2 is as low as 287 mV for Pd-SA/NC,outperforming the commer-cial IrO2 by 360 times in turnover frequency at 1.6 V versus RHE.Accordingly,the assembled rechargeable zinc-air battery(ZAB)achieves a maximum power den-sity of 170 mW cm-2,boosted by 2.3 times than Pt/C–IrO2.Two constructed ZABs efficiently power the NRR-OER system to electrochemically generate ammonia implying its superior trifunctionality.展开更多
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int...Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.展开更多
We demonstrate a simple and efficient biosynthesis method to prepare easily harvested biocompatible cadmium telluride(CdTe)quantum dots(QDs)with tunable fluorescence emission using yeast cells.Ultraviolet-visible(UV-v...We demonstrate a simple and efficient biosynthesis method to prepare easily harvested biocompatible cadmium telluride(CdTe)quantum dots(QDs)with tunable fluorescence emission using yeast cells.Ultraviolet-visible(UV-vis)spectroscopy,photoluminescence(PL)spectroscopy,X-ray diffraction(XRD),and transmission electron microscopy(TEM)confirm that the CdTe QDs are formed via an extracellular growth and subsequent endocytosis pathway and have size-tunable optical properties with fluorescence emission from 490 to 560 nm and a cubic zinc blende structure with good crystallinity.In particular,the CdTe QDs with uniform size(2-3.6 nm)are protein-capped,which makes them highly soluble in water,and in situ bio-imaging in yeast cells indicates that the biosynthesized QDs have good biocompatibility.This work provides an economic and environmentally friendly approach to synthesize highly fluorescent biocompatible CdTe QDs for bio-imaging and bio-labeling applications.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:22209126,22279095Shccig-Qinling Program。
文摘The utilization of single atoms(SAs)as trifunctional electrocatalyst for nitro-gen reduction,oxygen reduction,and oxygen evolution reactions(NRR,ORR,and OER)is still a formidable challenge.Herein,we devise one-pot synthesized palladium SAs stabilized on nitrogen-doped carbon palladium SA electrocat-alyst(Pd-SA/NC)as efficient trifunctional electrocatalyst for NRR,ORR,and OER.Pd-SA/NC performs a robust catalytic activity toward NRR with faradaic efficiency of 22.5%at-0.25 V versus reversible hydrogen electrode(RHE),and the relative Pd utilization efficiency is enhanced by 17-fold than Pd-NP/NC.In addition,the half-wave potential reaches 0.876 V versus RHE,amounting to a 58-time higher mass activity than commercial Pt/C.Moreover,the overpotential at 10 mA cm-2 is as low as 287 mV for Pd-SA/NC,outperforming the commer-cial IrO2 by 360 times in turnover frequency at 1.6 V versus RHE.Accordingly,the assembled rechargeable zinc-air battery(ZAB)achieves a maximum power den-sity of 170 mW cm-2,boosted by 2.3 times than Pt/C–IrO2.Two constructed ZABs efficiently power the NRR-OER system to electrochemically generate ammonia implying its superior trifunctionality.
基金financially supported by the National Natural Science Foundation of China(22309137,22279095)Open subject project State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2023001).
文摘Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
基金This work was supported by Discovery Grants from the Australian Research Council(No.DP0879769).
文摘We demonstrate a simple and efficient biosynthesis method to prepare easily harvested biocompatible cadmium telluride(CdTe)quantum dots(QDs)with tunable fluorescence emission using yeast cells.Ultraviolet-visible(UV-vis)spectroscopy,photoluminescence(PL)spectroscopy,X-ray diffraction(XRD),and transmission electron microscopy(TEM)confirm that the CdTe QDs are formed via an extracellular growth and subsequent endocytosis pathway and have size-tunable optical properties with fluorescence emission from 490 to 560 nm and a cubic zinc blende structure with good crystallinity.In particular,the CdTe QDs with uniform size(2-3.6 nm)are protein-capped,which makes them highly soluble in water,and in situ bio-imaging in yeast cells indicates that the biosynthesized QDs have good biocompatibility.This work provides an economic and environmentally friendly approach to synthesize highly fluorescent biocompatible CdTe QDs for bio-imaging and bio-labeling applications.