A layered oxide Li[Ni1/3Mn1/3Co1/3]O2 was synthesized by an oxalate co- precipitation method. The morphology, structural and composition of the as-papered samples synthesized at different calcination temperatures were...A layered oxide Li[Ni1/3Mn1/3Co1/3]O2 was synthesized by an oxalate co- precipitation method. The morphology, structural and composition of the as-papered samples synthesized at different calcination temperatures were investigated. The results indicate that calcination temperature of the sample at 850℃ can improve the integrity of structural significantly. The effect of calcination temperature varying from 750℃ to 950℃ on the electrochemical performance of Li[Ni1/3Mn1/3Co1/3]O2, cathode material of lithiumion batteries, has been investigated. The results show that Li[Ni1/3Mn1/3Co1/3]O2 calcined at 850℃ possesses a higher capacity retention and better rate capability than other samples. The reversible capacity is up to 178.6 mA.h.g-1, and the discharge capacity still remains 176.3 mA-h.g-1 after 30 cycles. Moreover, our strategy provides a simple and highly versatile route in fabricating cathode materials for lithium-ion batteries.展开更多
文摘A layered oxide Li[Ni1/3Mn1/3Co1/3]O2 was synthesized by an oxalate co- precipitation method. The morphology, structural and composition of the as-papered samples synthesized at different calcination temperatures were investigated. The results indicate that calcination temperature of the sample at 850℃ can improve the integrity of structural significantly. The effect of calcination temperature varying from 750℃ to 950℃ on the electrochemical performance of Li[Ni1/3Mn1/3Co1/3]O2, cathode material of lithiumion batteries, has been investigated. The results show that Li[Ni1/3Mn1/3Co1/3]O2 calcined at 850℃ possesses a higher capacity retention and better rate capability than other samples. The reversible capacity is up to 178.6 mA.h.g-1, and the discharge capacity still remains 176.3 mA-h.g-1 after 30 cycles. Moreover, our strategy provides a simple and highly versatile route in fabricating cathode materials for lithium-ion batteries.